Vol. 30, issue 11, article # 6

Ageev B. G., Gruzdev A. N., Ponomarev Yu. N., Sapozhnikova V. A. Variations of residual СО2 and total pressure in conifer woody roots. // Optika Atmosfery i Okeana. 2017. V. 30. No. 11. P. 941–947. DOI: 10.15372/AOO20171106 [in Russian].
Copy the reference to clipboard

In continuation of works on the determination of cyclic tree stem CO2 efflux, vacuum-extracted gas samples of large woody roots of Siberian stone pine and Scots pine are studied. Spectral and cross- spectral analyses reveal the cyclic character of variations in the chronologies. This behavior of total pressure and CO2 in large roots testifies to possible cyclic diffusion of CO2 from large roots into soil and then into the atmosphere, which can be considered as a new feature of autotroph respiration. An attempt is made to revise previously obtained results in some related works on the basis of cyclic large root CO2 efflux.


CO2, total pressure, woody roots, cyclicity


  1. Knutti R., Rogelj J. The legacy of our CO2 emissions: A clash of scientific facts, politics and ethics // Clim. Chang. 2015. V. 133, N 3. P. 361–373.
  2. McKinnon С. Climate justice in a carbon budget // Clim. Chang. 2015. V. 133, N 3. P. 375–384.
  3. The Potential for Carbon Sequestration in the United States [Electronic resource] // Congress of the United States. Congressional Budget Office paper. 2007. 32 p. URL: https://www.cbo.gov/sites/default/files/110th-congress-2007-2008/reports/09-12-carbonsequestration.pdf (last access: 17.07.2017).
  4. Tarko A.M. Mozhem li my zatormozit' global'noe poteplenie? Rossija v okruzhajushhem mire. // Analiticheskij ezhegodnik. M.: MNJePU, 2008. 328 p.
  5. Trumbore S.E., Angert A., Kunert N., Muhr J., Cham-bers, J.Q. What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processses // New Phytol. 2013. V. 197, N 2. P. 353–355.
  6. Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods // Soil Biol. Biochem. 2006. V. 38, N 3. P. 425–448.
  7. Trefilova O.V. Intensivnost' geterotrofnogo dyhanija v sosnjakah srednej tajgi: sravnitel'nyj analiz metodov ocenki // Hvojnye boreal'noj zony 2007. V. 24, № 4–5. P. 467–473.
  8. Rewald B., Rechenmacher A, Godbold D.L. It’s complicated: Intraroot system variability of respiration and morphological traits in four deciduous tree species // Plant Phys. 2014. V. 166, N 2. P. 736–745.
  9. Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate // Tellus B. 1992. V. 44, N 2. P. 81–99.
  10. Bloemen J., McGuire M.A., Aubre D.P., Teskey R.O., Steppe K. Transport of root-respired CO 2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees // New Phytol. 2013. V. 197, N 2. P. 555–565.
  11. Hashimoto S., Carvalhais N., Ito A., Migliavacca M., Nishina K., Reichstein M. Global spatiotemporal distribution of soil respiration modeled using a global database // Biogeosciences. 2015. V. 12. Р. 4121–4132.
  12. Pallardy S.G. Physiology of woody plants. New York: Elsevier Academic Press, 2008. 469 p.
  13. Day S.D., Wiseman P.E., Dickinson S.B., Harris J.R. Contemporary concepts of root system architecture of urban trees // Arboric. Urban For. 2010. V. 36, N 4. Р. 149–159.
  14. Zarubina L.V., Konovalov V.N., Feklistov P.A., Klevcov D.N. Dinamika dyhanija kornej sosny i eli v severotaezhnyh fitocenozah // Vestn. Sev. (Arkt.) feder. un-ta. Ser.: Estestv. nauki. 2014. N 2. P. 52–59.
  15. Matvienko A.I., Makarova M.I., Menjajlo O.V. Biologicheskie istochniki pochvennogo SO2 pod listvennicej sibirskoj i sosnoj obyknovennoj // Jekologija. 2014. N 3. P. 182–188.
  16. Pregitzer K.S. Woody plants, carbonallocation and fine roots // New Phytol. 2003. V. 158, N 3. Р. 419–430.
  17. Bader M., Hiltbrunner E., Körner C. Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE) // Funct. Ecol. 2009. V. 23, N 5. P. 913–921.
  18. Romanovskij M.G., Gopius Ju.A., Mamaev V.V., Shhekalev R.V. Avtotrofnoe dyhanie lesostepnyh dubrav. Arhangel'sk: IPP Pravda Severa, 2008. 92 p.
  19. Hirano Y., Dannoura M., Aono K., Igarashi T., Ishii M., Yamase K., Makita N., Kanazawa Y. Limiting factors in the detection of tree roots using ground-penetrating radar // Plant Soil. 2009. V. 319, N 1–2. P. 15–24.
  20. Bloemen J., Teskey R.O., McGuire M.A., Aubrey D.P., Steppe K. Root xylem CO2 flux: An important but unaccounted – for component of root respiration // Trees. 2016. V. 30, N 2. P. 343–352.
  21. Ageev B.G., Gruzdev A.N., Sapozhnikova V.A. Variacii soderzhanija i davlenija gazovyh komponentov v drevesine spilov stvola i kornja nekotoryh hvojnyh derev'ev // Optika atmosf. i okeana. 2016. V. 29, № 10. С. 862–869; Ageev B.G., Gruzdev A.N., Sapozhnikova V.A. Variations in gas components and total pressure in stem and root disc wood of conifer species // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 209–215.
  22. Ageev B., Ponomarev Yu., Sapozhnikova V., Savchuk D. A laser photoacoustic analysis of residual CO2 and H2O in larch stems // Biosensors. 2015. V. 5, N 1. P. 1–12.
  23. Sapozhnikova V.A., Gruzdev A.N., Ageev B.G., Ponomarev Yu.N., Savchuk D.A. Relationship between CO2 and H2O variations in tree rings of siberian stone pine and meteorological parameters // Dokl. Earth Sci. 2013. V. 450. Part 2. P. 652–657.
  24. Aref’ev V.N., Kamenogradskii N.E., Kashin F.V., Shil-kin A.V. Background component of carbon dioxide concentration in the near-surface air // Izv. Atmos. Ocean. Phys. 2014. V. 50, N 6. P. 576–582.
  25. Galimov Je.M. Priroda biologicheskogo frakcionirovanija izotopov. M.: Nauka, 1986. 247 p.
  26. Rubino M., Etheridge D., Trudinger C., Francey R. A revised 1000 year atmospheric d13C-CO2 record from Law Dome and South Pole, Antarctica // J. Geophys. Res. 2013. V. 118, N 15. P. 8482–8499.
  27. Kay S.M., Marple S.L. Spectral analysis – A modern perspective // Proc. IEEE. 1981. V. 69, N 11. P. 1380–1419.
  28. Jones R.H. Multivariate autoregression estimation using residuals // Appl. Time Ser. Anal. New York: Academic Press, 1978. P. 139–162.
  29. Gruzdev A.N., Schmidt H., Brasseur G.P. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model // Atmos. Chem. Phys. 2009. N 9. P. 595–614.
  30. Gruzdev A.N., Bezverkhny V.A. Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind // J. Geophys. Res. D. 2000. V. 105, N 24. Р. 29435–29443.
  31. Bond-Lamberty B., Thomson A. Temperature-associated increases in the global soil respiration record // Nature. 2010. V. 464, N 7288. P. 579–582.
  32. Bostrӧm B., Comstedt D., Ekblad A. Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter // Oceologia. 2007. V. 153, N 1. P. 89–98.
  33. Савельева Л.С. Срастание корневых систем древесных пород. M.: Лесная промышленность, 1969. 73 с.
  34.  Klein T., Siegwolf R.T.W., Kӧrner C. Belowground carbon trade among tall trees in a temperate forest // Science. 2016. V. 352, N 6283. P. 342–344. DOI: 10.1126/science.aad6188.
  35. Kramer P.D., Kozlovskij T.T. Fiziologija drevesnyh rastenij. M.: Lesnaja promyshlennost', 1983. 456 p.
  36. Lev-Yadun S., Sprugel D. Why should trees have natural root grafts? // Tree Physiology. 2011. V. 31, N 6. P. 575–578. DOI: https://doi.org/10.1093/treephys/tpr061.