Vol. 31, issue 01, article # 7

Razenkov I. A. Turbulent lidar. I. Design. // Optika Atmosfery i Okeana. 2018. V. 31. No. 01. P. 41–48. DOI: 10.15372/AOO20180107 [in Russian].
Copy the reference to clipboard

Two designs of the laser radar system operating on the basis of the backscatter amplification effect (BSA) are suggested. The system is, in fact, a micro-pulse aerosol lidar with two receiving channels, one of which records an increase in the echo signal on the laser beam axis with an increase in the atmospheric turbulence intensity. The BSA effect has place in a narrow spatial region around the laser beam axis; so, the receiver aperture should be small enough. The creation of the turbulent lidar became possible with the advent of compact pulsed lasers with pulse energies lower then mJ and pulse repetition rates of several kHz. The lidar is intended for continuous long-term unattended operation. It is eye safe. Two schemes of the turbulent lidar on the basis of an afocal Mersenne telescope (mirror collimator) are suggested. BSA-2 and BSA-3 turbulent lidars are described. On the basis of Vorob’ev’s approximation for statistically homogeneous turbulent environment, an algorithm is suggested for retrieval of the structure parameter of optical turbulence Cn2 from lidar data.


atmospheric turbulence, backscatter amplification effect, lidar


  1.      Vinogradov A.G., Kravcov Ju.A., Tatarskij V.I. Jeffekt usilenija obratnogo rassejanija na telah, pomeshhennyh v sredu so sluchajnymi neodnorodnostjami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
   2. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravcov Ju.A., Tatarskij V.I. Zakonomernost' uvelichenija obratnogo rassejanija voln. Svidetel'stvo na otkrytie N 359. Prioritet otkrytija: 25 august 1972 year v chasti teoreticheskogo obosnovanija i 12 august 1976 year v chasti jeksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Bjul. izobretenij. 1989. N 21.
   3. Banah V.A., Smaliho I.N. Opredelenie intensivnosti opticheskoj turbulentnosti po obratnomu atmosfernomu rassejaniju lazernogo izluchenija // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 300–307; Banakh V.A., Smalikho I.N. Determination of optical turbulence intensity by atmospheric backscattering of laser radiation // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 457–465.
   4. Smaliho I.N. Raschet kojefficienta usilenija obratnogo rassejanija lazernogo izluchenija, rasprostranjajushhegosja v turbulentnoj atmosfere, s ispol'zovaniem chislennogo modelirovanija // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 796–800; Smalikho I.N. Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 135–139.
   5. Banah V.A. Usilenie srednej moshhnosti obratno rassejannogo v atmosfere izluchenija v rezhime sil'noj opticheskoj turbulentnosti // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 857–862; Banakh V.A. Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 90–95.
   6. Vorob'ev V.V., Vinogradov A.G. Vlijanie fonovoj turbulentnosti v lidarnyh issledovanijah turbulentnosti jasnogo neba // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1015–1022; Vorob’ev V.V., Vinogradov A.G. Effect of background turbulence in lidar investigations of clear air turbulence // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 134–141.
   7. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovlenija parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovanija. I. Uravnenija // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875.; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar soun-ding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
   8. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove jeffekta usilenija obratnogo rassejanija // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
   9. Gurvich A.S. Lidarnoe pozicionirovanie oblastej povyshennoj turbulentnosti jasnogo neba // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 166–174.
10. Lidar: Pat. N 116245. Russia, MPK, G01S 17/88. Gurvich A.S.; In-t fiz. atmosf. im. A.M. Obuhova RAN. N 2011150933/28; Zajavl. 15.12.2011; Opubl. 20.05.2012. Bjul. N 14.
11. Ustrojstvo dlja registracii usilenija obratnogo rassejanija v atmosfere: Pat. 153460. Russia, MPK, G01S 17/95. Razenkov I.A., Banah V.A., Nadeev A.I.; V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science. N 2014149551/28; Zajavl. 10.12.2014; Opubl. 20.07.2015. Bjul. N 20.
12. Razenkov I.A. Ajerozol'nyj lidar dlja nepreryvnyh atmosfernyh nabljudenij // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 52–63; Rasenkov I.A. Aerosol lidar for continuous atmospheric monitoring // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 308–319.
13. Banah V.A., Razenkov I.A., Smaliho I.N. Ajerozol'nyj lidar dlja issledovanija usilenija obratnogo atmosfernogo rassejanija. I. Komp'juternoe modelirovanie // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 5–11.
14. Banakh V.A., Razenkov I.A., Smalikho I.N. Laser echo signal amplification in a turbulent atmosphere // Appl. Opt. 2015. V. 54, N 24. P. 7301–7307.
15. Banakh V.A., Razenkov I.A. Ajerozol'nyj lidar dlja issledovanija usilenija obratnogo atmosfernogo rassejanija. II. Konstrukcija i jeksperiment // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 113–119.
16. URL: http://www.zemax.com (last access: 11.04.2017).