Vol. 31, issue 02, article # 2

Kanev F. Yu., Makenova N. A., Lukin V. P., Аntipov O. L., Veretekhin I. D. Adaptive compensation of thermal distortions of multichannel laser radiation. // Optika Atmosfery i Okeana. 2018. V. 31. No. 02. P. 90–94. DOI: 10.15372/AOO20180202 [in Russian].
Copy the reference to clipboard
Abstract:

Results of simulation of multichannel radiation propagation under conditions of thermal blooming are presented and correction of nonlinear thermal distortion on the base of the beam phase control is considered. The results show the dependence of correction effectiveness on the number of channels and on the precision of reference beam phase retrieval. An additional increase in the effectiveness is possible with adjustment of amplification in the channels of the optical system, i.e., with the use of amplitude-phase control of radiation.

Keywords:

adaptive optics, thermal blooming, multichannel radiation, phase conjugation, amplitude-phase control over the beam wavefront

References:

  1. Bruesselbach H., Wang Sh., Minden M., Jones D.C., Mangir M. Power-scalable phase-compensating fiber-array transceiver for laser communications through the atmosphere // J. Opt. Soc. Am. B. 2005. V. 22, N 2. P. 347–354.
  2. Fotiadi A.A., Zakharov N., Antipov O.L., Mégret P. All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers // Opt. Lett. 2009. V. 34, N 22. P. 3574–3576.
  3. Fan T.Y. Laser beam combining for high-power, high-radiance sources // IEEE J. Sel. Topics Quantum Electron. 2005. V. 11, N 3. P. 567–572.
  4. Grime B.W., Roh W.B., Alley Th.G. Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror // Opt. Lett. 2005. V. 30, N 18. P. 2415–2417.
  5. Fan X., Liu J., Liu J., Wu J. Experimental investigation of a seven-element hexagonal fiber coherent array // Chin. Opt. Lett. 2010. V. 8, N 1. P. 48–51.
  6. Bellanger C. Coherent fiber combining by digital holography // Opt. Lett. 2008. V. 33, N 24. P. 2937–2939.
  7. Vorontsov M.A., Lachinova S.I. Laser beam projection with adaptive array of fiber collimators. I. Basic consideration for analysis // J. Opt. Soc. Am. A. 2008. V. 25, N 8. P. 1949–1959.
  8. Vorontsov M.A., Lachinova S.I. Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency // J. Opt. Soc. Am. A. 2008. V. 25, N 8. P. 1960–1973.
  9. Banah V.A., Falic A.V. Ocenka jeffektivnosti fokusirovki mnogojelementnogo puchka v uslovijah teplovogo samovozdejstvija // Optika atmosf. i okeana. 2014. V. 27, N 1. P. 11–17;  Banakh V.A., Falits А.V. Assessment of multielement beam focusing under conditions of thermal blooming // Atmos. Ocean. Opt. 2014. V. 27, N 3. P. 211–217.
  10. Banah V.A., Falic A.V. Chislennoe modelirovanie rasprostranenija lazernyh puchkov, formiruemyh mnogojelementnymi aperturami, v turbulentnoj atmosfere pri teplovom samovozdejstvii // Optika atmosf. i okeana. 2014. V. 26, N 5. P. 371–380.
  11. Weyrauch T., Vorontsov M.A., Carhart G.W., Beresnev L.A., Rostov A.P., Polnau E.E., Liu J.J. Experimental demonstration of coherent beam combining over a 7 km propagation path // Opt. Lett. 2011. V. 36, N 22. P. 4455–4457.
  12. Voroncov M.A., Shmal'gauzen V.I. Principy adaptivnoj optiki. M.: Nauka, 1985. 335 p.
  13. Marchuk G.I. Algoritmy rasshheplenija. M.: Nauka, 1988. 264 p.
  14. Kanev F.Ju., Lukin V.P., Makenova N.A., Moisej E.I. Novyj algoritm formirovanija amplitudnogo profilja izluchenija // Optika atmosf. i okeana. 2008. V. 21, N 4. P. 368–374.
  15. Kanev F.Ju., Lukin V.P. Adaptivnaja optika. Chislennye i jeksperimental'nye issledovanija. Tomsk: Izd-vo IOA SO RAN, 2005. 254 p.

  16.