Vol. 31, issue 04, article # 11

Tashchcilin A. V., Leonovich V. A. Model estimation of the OI 630 nm emission intensity during the strong geomagnetic storm on November 20, 2003. // Optika Atmosfery i Okeana. 2018. V. 31. No. 04. P. 318–323. DOI: 10.15372/AOO20180411 [in Russian].
Copy the reference to clipboard

Based on the energetic electron precipitation data, obtained using the magnetogram inversion technique (MIT), there were performed model estimates of variations in the night mid-latitude ionosphere parameters for Irkutsk (52°N, 105°E) during the very strong geomagnetic storm on November 20–23, 2003 (Kр = 9, Dstmax = 472 nT). The derived fluxes of precipitating electrons are able to produce the night electron density with ne ~ 3 × 106 cm-3 and electron temperature Te ≤4500 K, which can provide the observed magnitude increase in the red line emission due to excitation of atomic oxygen 1D level, mainly in collisions of molecular oxygen ions with thermal electrons.


ionospheric disturbance, airglow, geomagnetic storm


    1.    Михалев А.В, Белецкий А.Б, Костылева Н.В., Черниговская М.А. Среднеширотные сияния на юге Восточной Сибири во время больших геомагнитных бурь 29–31 october и 20–21 november 2003 year // Космические исследования. 2004. V. 42, N 6. P. 616–621.
   2. Meng C.-I. Dynamic variation of the auroral oval during intense magnetic storms // J. Geophys. Res. A. 1984. V. 89, N 1. P. 227–235. DOI: 10.1029/JA089iA01p00227.
   3. Foster J.C., Vo H.B. Average characteristics and activity dependence of the subauroral polarization stream // J. Geophys. Res. A. 2002. V. 107, N 12. P. 1475. DOI: 10.1029/2002JA009409.
   4. Gussenhoven M.S., Hardy D.A., Heinemann N.l. Systematics of the equatorward diffuse auroral boundary // J. Geophys. Res. A. 1983. V. 88, N 7. P. 5692–5708. DOI: 10.1029/JA088iA07p05692.
   5. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E.J. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. 2014. V. 12, N 6. P. 368–379. DOI: 10.1002/2014sw001056.
   6. Pokhotelov D., Mitchell C.N., Spencer P.S.J., Hairston M.R., Heelis R.A. Ionospheric storm time dynamics as seen by GPS tomography and in situ spacecraft observations // J. Geophys. Res. A. 2008. V. 113, N 3. P. A00A16. DOI: 10.1029/2008ja013109.
   7. Liu H., Lühr H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations // J. Geophys. Res. А. 2005. V. 110. P. A09S29. DOI: 10.1029/2004JA010908.
   8. Tashhilin A.V., Leonovich L.A. Modelirovanie nochnyh svechenij krasnoj i zelenoj linij atomarnogo kisloroda dlja umerenno vozmushhennyh geomagnitnyh uslovij na srednih shirotah // Solnechno-zemnaja fizika. 2016. V. 2, N 4. P. 76–84.
   9. Krinberg I.A., Tashhilin A.V. Ionosfera i plazmosfera. M.: Nauka, 1984. 188 p.
10. Mantas G.P. Large 6300-Å airglow intensity enhancements observed in Ionosphere Heating Experiments are excited by thermal electrons // J. Geophys. Res.: Space Phys. A. 1994. V. 99, N 5. P. 8993–9002.
11. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. A. 2002. V. 107, N 12. P. 1468. DOI: 10.1029/2002JA009430.
12. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnitnye variacii i buri. Novosibirsk: Nauka, 1979. 248 p.
13. Mishin V.M. The magnetogram inversion technique and some applications // Space Sci. Rev. 1990. V. 53, N 1–2. P. 83–163. DOI: 10.1007/bf00217429.
14. Schunk R.W., Nagy A.F. Ionospheres: Physics, Plasma Physics, and Chemistry. 2th ed. Cambridge: Cambridge University Press, 2009. 628 p.