Vol. 31, issue 07, article # 8

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I. A multi-aperture transceiver system of a lidar with narrow field of view and minimal dead zone. // Optika Atmosfery i Okeana. 2018. V. 31. No. 07. P. 551–558. DOI: 10.15372/AOO20180708 [in Russian].
Copy the reference to clipboard
Abstract:

The requirements to the transceiver system of a Raman-lidar intended for studying the atmospheric boundary layer and predicting the danger of smog formation are determined. Synthesis of the optical layout of a lidar transceiver system with narrow field of view and minimal dead zone is carried out. The results of computer simulation of the lidar overlap functions obtained by the ray tracing for several variants of the optical layout of the receiving optical system are presented. It is shown that when using a multi-element transceiver based on a combination of four receiving apertures of different diameters, a lidar sensing range from 5 to 3000 m can be obtained in a dynamic range of the lidar response of no more than 10.

Keywords:

lidar, transceiver system, temperature, atmosphere, optical fiber

References:

  1. Agishev R.R., Adolfo C. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications // Appl. Opt. 2002. V. 41. P. 7516–7521.
  2. Stelmaszczyk K., Dell’Aglio M., Chudzyn´ski S., Stacewicz T., Wöste L. Analytical function for lidar geometrical compression form-factor calculations // J. Appl. Opt. 2005. V. 44, N 7. P. 1323–1331.
  3. Wandinger U., Ansmann A. Experimental determination of the lidar overlap profile with Raman lidar // Appl. Opt. 2002. V. 41, N 3. P. 511–514.
  4. Hu S., Wang X., Wu Y., Li C., Hu H. Geometrical form factor determination with Raman backscattering signals // Opt. Lett. 2005. V. 30 (14). P. 1879–1881.
  5. Banah V.A., Razenkov I.A., Smaliho I.N. Aerozol'nyj lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. I. Komp'yuternoe modelirovanie // Optika atmosf. i okeana. 2015. V. 28. N 1. P. 5–11.
  6. Kaul' B.V. Antennyj kompleks dlya lazernogo zondirovaniya verhnih sloev atmosfery // Optika atmosf. i okeana. 1992. V. 5, N 4. P. 431–438.
  7. Abramochkin A.I., Tihomirov A.A. Optimizatsiya priemnoj sistemy lidara. 2. Prostranstvennye fil'try. // Optika atmosf. i okeana. 1999. V. 12, N 4 P. 345–356.
  8. Balin Yu.S., Samohvalov I.V. Nekotorye puti umen'sheniya dinamicheskogo diapazona lidarnyh signalov // Apparatura i metodiki distantsionnogo zondirovaniya parametrov atmosfery. Novosibirsk: Nauka, 1979. P. 43–47.
  9. А.  s. 496524 SSSR, Sposob opticheskogo zondirovaniya atmosfery / Balin Yu.S., Samohvalov I.V., Shamanaev V.S. Opubl. v BI. 1975. Byul. N 47.
  10. Tihomirov A.A. Analiz metodov i tekhnicheskih sredstv szhatiya dinamicheskogo diapazona lidarnyh signalov // Optika atmosf. i okeana. 2000. V. 13, N 2. P. 208–219.
  11. Lidarnyj kompleks dlya kontrolya opticheskogo sostoyaniya atmosfery: Pat. 116652. Russia, Balin Yu.S., Kohanenko G.P., Klemasheva M.G., Penner I.E., Samojlova S.V.; In-t optiki atmosf. im. V.E. Zueva SO RAN. Zayavl. 17.05.2011; Opubl. 27.05.2012.
  12. Balin Yu.S., Bairashin G.S., Kokhanenko G.P., Klemasheva M.G., Penner I.E., Samoilova S.V. LOSA-M2 aerosol Raman lidar // Quantum Electron. 2011. V. 41, N 10. P. 945–949.
  13. Balin I., Serikov I., Bobrovnikov S., Simeonov V., Calpini B., Arshinov Y., van den Bergh H. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar // Appl. Phys. B. 2004. N 79. P. 775–782.
  14. Radlach M., Behrendt A., Wulfmeyer V. Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields // Atmos. Chem. Phys. 2008. V. 8. P. 159–169.
  15. Arshinov Yu., Bobrovnikov S., Serikov I., Ansmann A., Wandinger U., Althausen D., Mattis I., Müller D. Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer // Appl. Opt. 2005. V. 44, N 17. P. 3593–3603.
  16. Kohanenko G.P., Balin Yu.S., Klemasheva M.G., Penner I.E., Samojlova S.V., Terpugova S.A., Banah V.A., Smaliho I.N., Falits A.V., Rasskazchikova T.M., Antohin P.N., Arshinov M.Yu., Belan B.D., Belan S.B. Struktura aerozol'nyh polej pogranichnogo sloya atmosfery po dannym aerozol'nogo i doplerovskogo lidarov v period prohozhdeniya atmosfernyh frontov // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 679–688; Kokhanenko G.P., Balin Yu.S., Klemasheva M.G., Penner I.E., Samoilova S.V., Terpugova S.A., Banakh V.A., Smalikho I.N., Falits A.V., Rasskazchikova T.M., Antokhin P.N., Arshinov M.Yu., Belan B.D., Belan S.B. Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 18–32.
  17. McGrath-Spangler E.L., Molod A. Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions // Atmos. Chem. Phys. 2014. V. 14, P. 6717–6727.
  18. McGrath-Spangler E.L., Denning A.S. Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR // J. Geophys. Res.: Atmos. 2013. V. 118. P. 1226–1233.
  19. Seidel D.J., Ao C.O., Li K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis // J. Geophys. Res. 2010. V. 115, N D16. P. D16113. DOI: 10.1029/2009JD013680
  20. Cooney J., Pina M. Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter // Appl. Opt. 1976. V. 15. P. 602–603.
  21. Gill R., Geller K., Farina J., Cooney J. Measurement of atmospheric temperature profiles using Raman lidar // J. Appl. Meteorol. 1979. V. 18. P. 225–227.
  22. Matvienko G.G., Balin Yu.S., Bobrovnikov S.M., Kharchenko O.V., Yakovlev S.V., Baz Makeev A.P., Nevzorov A.A., Nevzorov A.V. Siberian Lidar Station: instrument and results // Proc. SPIE. 2016. V. 10035. CID: 1003 59. [10035–227]. DOI: 10.1117/12.2254787.
  23. Cooney J.A. Measurement of atmospheric temperature profiles by Raman backscatter // J. Appl. Meteorol. 1972. V. 11, N 1. P. 108–112.
  24. Butcher R.J., Willetts D.V., Jones W.J. On the use of Fabry-Perot etalon for the determination of rotational constants of simple molecules – the pure rotational Raman spectra of oxygen and nitrogen // Proc. Roy. Soc. Lon. A. 1971. V. 324. P. 231–245.
  25. Reichardt J., Wandinger U., Klein V., Mattis I., Hilber B., Begbie R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements // Appl. Opt. 2012. V. 51. P. 8111–8131.
  26. Goldsmith J., Blair F.H., Bisson S.E., Turner D.D. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols // Appl. Opt. 1998. V. 37, P. 4979–4990.
  27. Sherlock V., Hauchecorne A., Lenoble J. Methodology for the independent calibration of Raman backscatter water-vapor lidar systems // Appl. Opt. 1999. V. 38. P. 5816–5837.
  28. Whiteman D.N., Melfi S.H., Ferrare R.A. Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere // Appl. Opt. 1992. V. 31. P. 3068–3082.
  29. Lazernyj kontrol' atmosfery / pod red. E.D. Hinkli. M.: Mir, 1979. 416 p.
  30. Dinoev T., Simeonov V., Arshinov Y.,  S., Ristori P., Calpini B., Parlange M., van den Bergh H. Raman lidar for meteorological observations, RALMO – Part 1: Instrument description // Atmos. Meas. Tech. 2013. V. 6. P. 1329–1346.