Coherent properties of diffraction-free pseudo-Bessel optical beams propagating in a turbulent atmosphere are theoretically studied. The solution of the equation for the second-order transverse function of mutual coherence of the optical radiation field, derived from the paraxial approximation of the scalar wave equation, is analyzed. The behavior of the modulus and phase of the complex coherence degree, the coherence radius, and the integral scale of the coherence degree of a Bessel-Gaussian optical beam and a conic optical wave found through conic focusing of an optical beam by an axicon is studied for different parameters of the optical beam and turbulent atmosphere. Significant qualitative and quantitative differences are discovered between the studied coherence characteristics of a Bessel-Gaussian optical beam and a conic optical wave. In general, the coherence of a conic optical wave is higher than that of a Bessel-Gaussian optical beam under identical propagation conditions in a turbulent atmosphere.
Bessel beam, axicon, optical radiation, atmospheric turbulence, coherence
1. Born M., Vol'f E. Osnovy optiki. M.: Nauka, 1973. 720 p.
2. Mors F.M., Feshbah G. Metody teoreticheskoj fiziki. V. 1. M.: Izd-vo inostr. lit-ry, 1958. 930 p.
3. Miller U. Simmetriya i razdelenie peremennyh. M.: Mir, 1981. 342 p.
4. Kiselev A.P. Lokalizovannye svetovye volny: paraksial'nye i tochnye resheniya volnovogo uravneniya (Obzor) // Optika i spektroskopiya. 2007. V. 102, N 4. P. 661–681.
5. Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory // J. Opt. Soc. Am. A. 1987. V. 4, N 4. P. 651–654.
6. Gori F., Guattari G., Padovani C. Bessel-Gauss beams // Opt. Commun. 1987. V. 64, N 6. P. 491–495.
7. McLeod J.H. The axicon: A new type of optical element // J. Opt. Soc. Am. 1954. V. 44, N 8. P. 592–597.
8. Friberg A.T. Stationary-phase analysis of generalized axicons // J. Opt. Soc. Am. A. 1996. V. 13, N 4. P. 743–750.
9. Ling D., Li J., Chen J. Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method // J. Opt. Soc. Am. A. 2006. V. 23, N 4. P. 912–918.
10. Koronkevich V.P., Harisov A.A., Gejl M.T., Shutts H. Mnogoporyadkovye difraktsionnye linzy dlya formirovaniya besselevyh puchkov // Avtometriya. 1966. N 5. P. 38–43.
11. Aruga T., Li Sh.W., Yoshikado Sh., Takube M., Li R. Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation // Appl. Opt. 1999. V. 38, N 15. P. 3152–3156.
12. Birch P., Ituen I., Young R., Chatwin Ch. Long-distance Bessel beam propagation through Kolmogorov turbulence // J. Opt. Soc. Am. A. 2015. V. 32, N 11. P. 2066–2073.
13. Cheng M., Guo L., Li J., Huang Q. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence // J. Opt. Soc. Am. A. 2016. V. 33, N 8. P. 1442–1450.
14. Chen Sh., Li Sh., Zhao Y., Liu J., Zhu L., Wang A., Du J., Shen L., Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation // Opt. Lett. 2016. V. 41, N 20. P. 4680–4683.
15. Zhang Y., Ma D., Yuan X., Zhou Z. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere // Appl. Opt. 2016. V. 55, N 32. P. 9211–9216.
16. Doster T., Watnik A.T. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: Analysis of channel efficiency // Appl. Opt. 2016. V. 55, N 36. P. 10239–10246.
17. Lukin I.P. Fluktuatsii fazy bessel'-gaussovyh puchkov v sluchajno-neodnorodnyh sredah // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 66–70; Lukin I.P. Bessel–Gaussian beams phase fluctuations in randomly inhomogeneous media // Atmos. Ocean. Opt. 2010. V. 23, N 3. P. 236–240.
18. Lukin I.P. Fluktuatsii fazy opticheskih voln pri konicheskoj fokusirovke v turbulentnoj atmosfere // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1066–1071; Lukin I.P. Phase fluctuations of optical waves in the case of cone focusing in turbulent atmosphere // Atmos. Ocean. Opt. 2012. V. 25, N 3. P. 199–203.
19. Lukin I.P. Kogerentnost' besseleva puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 393–402; Lukin I.P. Coherence of a Bessel beam in a turbulent atmosphere // Atmos. Ocean. Opt. 2012. V. 25, N 5. P. 328–337.
20. Lukin I.P. Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere // Proc. SPIE. 2013. V. 9066. P. 90660Q.
21. Eyyuboglu H.T., Baykal Y., Cai Y. Complex degree of coherence for partially coherent general beams in atmospheric turbulence // J. Opt. Soc. Am. A. 2007. V. 24, N 9. P. 2891–2901.
22. Nelson W., Palastro J.P., Davis C.C., Sprangle P. Propagation of Bessel and Airy beams through atmospheric turbulence // J. Opt. Soc. Am. A. 2014. V. 31, N 3. P. 603–609.
23. Jiang Zh., Lu Q., Liu Z. Propagation of apertured Bessel beams // Appl. Opt. 1995. V. 34, N 31. P. 7183–7185.
24. Rytov S.M., Kravtsov YU.A., Tatarskij V.I. Vvedenie v statisticheskuyu radiofiziku. Part. 2. Sluchajnye polya. M.: Nauka, 1978. 464 p.
25. Belen'kij M.S., Lukin V.P., Mironov V.L., Pokasov V.V. Kogerentnost' lazernogo izlucheniya v atmosfere. Novosibirsk: Nauka, 1985. 176 p.
26. Gradshtejn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedenij. M.: Nauka, 1971. 1108 p.
27. Fedoryuk M.V. Metod perevala. M.: Nauka, 1977. 368 p.
28. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka, 1967. P. 21–22.