Vol. 31, issue 10, article # 8

Soldatenko S. A., Yusupov R. M. Optimal control of artificial sulfate aerosols usage to mitigate global warming. // Optika Atmosfery i Okeana. 2018. V. 31. No. 10. P. 821–828. DOI: 10.15372/AOO20181008 [in Russian].
Copy the reference to clipboard

The optimal control problem for deliberate intervention on the Earth's climate system is considered with the aim of stabilizing the global surface temperature. The deliberate intervention is implemented via the controlled radiative perturbation created by artificial aerosols injected into the stratosphere. The controlled object is described by a two-component energy balance model, subject to radiative exposure, caused by an increase in the concentration of greenhouse gases in the atmosphere. Anthropogenic impact on the climate system is specified in accordance with the RCP scenarios, as well as with 1% per year increase in atmospheric carbon dioxide scenario. The albedo of the artificial aerosol global layer represents the control variable. The optimal control and the corresponding phase trajectory of the climate system are obtained analytically using the Pontryagin’s maximum principle. The approach discussed in this paper can be considered as a basis for developing scenarios for deliberate intervention on the climate system using various geoengineering methods.


optimal control, geophysical cybernetics, climate engineering, weather modification, global warming


   1. IPCC, 2013: Climate Change 2013: The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press, 2013. 1535 p.
   2. Statement on the State of the Global Climate in 2017. Report N 1212.  Geneva,  Switzeland:  WMO, 2018. 40 p.
   3. Paris Agreement. URL: https://www.unfccc.int/sites/ default/files/paris_agreement_english_.pdf (last access: 1.06.2018).
   4. Rodelj J., den Elzen M., Höhne N., Fransen T., Fekete H., Winkler H., Schaeffer R., Sha F., Riahi K., Meinshausen M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C // Nature. 2016. V. 534. P. 631–639.
   5. Brown P., Caldeira K. Greater future global warming inferred from Earth’s recent energy budget // Nature. 2017. V. 552. P. 45–50.
   6. Raftery A.E., Zimmer A., Frierson D.M.W., Startz R., Liu P. Less than 2 °C warming by 2100 unlikely // Nat. Clim. Change. 2017. V. 7. P. 637–641.
   7. Jacob D., Kotova L., Teichmann C., Sobolowski S.P., Vautard R., Donnelly C., Koutroulis A.G., Grillakis M.G., Tsanis I.K., Damm A., Sakalli A., van Vliet M.T.H. Climate impacts in Europe under +1.5 °C global warming // Earth's Future. 2018. V. 6. P. 264–285.
   8. Tanaka K., O'Neill B.C. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2  °C temperature targets // Nat. Clim. Change. 2018. V. 8. P. 319–324.
   9. Henley B., King A. Trajectories toward the 1.5 °C Paris target: Modulation by the Interdecadal Pacific Oscillation // Geophys. Res. Lett. 2017. V. 44. P. 4256–4262.
10. MacMartin D.G., Ricke K.L., Keith D.W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target // Phil. Trans. Roy. Soc. A. 2018. V. 376. ID 20160454.
11. Climate Intervention Requires Enhanced Research, Consideration of Societal and Environmental Impacts, and Policy Development [Electronic resource]. URL: https:// sciencepolicy.agu.org/files/2018/01/Climate-Intervention-Position-Statement-Final-2018-1.pdf (last access: 1.06.2018).
12. AGU White Paper 2017: Climate Intervention Requires Enhanced Research, Consideration of Societal Impacts, and Policy Development [Electronic resource]. URL: https://www.sciencepolicy.agu.org/files/2017/11/AGU-White-Paper-on-Geoengineeging.pdf (last access: 1.06.2018).
13. Budyko M.I. Metod vozdejstviya na klimat // Meteorol. i gidrol. 1974. N 2. P. 91–97.
14. Izrael' Yu.A. Effektivnyj put' sohraneniya klimata na sovremennom urovne – osnovnaya tsel' resheniya klimaticheskoj problemy // Meteorol. i gidrol. 2005. N 10. P. 5–9.
15. Crutzen P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? // Clim. Change. 2006. V. 77. P. 211–220.
16. Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vliyanie estestvennyh i antropogennyh aerozolej na global'nyj i regional'nyj klimat // Ros. him. zhurn. 2008. V. LII, N 5. P. 112–119.
17. Keith D.W. Geoengineering the climate: History and prospect // Annu. Rev. Energy Environ. 2000. V. 25. P. 245–284.
18. Izrael' Yu.A., Ryaboshapko A.G., Petrov N.N. Sravnitel'nyj analiz geoinzhenernyh sposobov stabilizatsii klimata // Meteorol. i gidrol. 2009. N 6. P. 5–24.
19. Robock A., Marquardt A., Kravitz B., Stenchikov G. Benefits, risks, and costs of stratospheric geoengineering // Geophys. Res. Lett. 2009. V. 36. P. L19703.
20. Shepherd J.G. Geoengineering the climate: An overview and update // Phil. Trans. R. Soc. A. 2009. V. 370. P. 4166–4175.
21. Chernokul'skij A.V., Eliseev A.V., Mohov  I.I. Analiticheskaya otsenka effektivnosti predotvrashcheniya potepleniya klimata kontroliruemymi aerozol'nymi emissiyami v stratosferu // Meteorol. i gidrol. N 5. P. 16–26.
22. Izrael' Yu.A., Ryaboshapko A.G. Geoinzheneriya klimata: vozmozhnosti realizatsii // Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. 2011. V. 24. M.: IGKE Rosgidrometa i RAN. P. 11–24.
23. Bellamy R., Chilvers J., Vaughan N.E., Lenton T.M. A review of climate geoengineering appraisals // WIREs Clim. Change. 2012. V. 3. P. 597–615.
24. Irvine P.J., Kravitz B., Lawrence M.G., Muri H. An overview of the Earth system science of solar geoengineering // WIREs Clim. Change. 2016. V. 7. P. 815–833.
25. Caldeira K., Bala G. Reflecting on 50 years of geoen-gineering research // Earth’s Future. 2017. V. 5(1). P. 1–17.
26. Kravitz B., Robock A., Boucher O., Schmidt H., Taylor K.E., Stenchikov G., Schulz M. The Geoengineering Model Intercomparison Project (GeoMIP) // Atmos. Sci. Lett. 2011. V. 12. P. 162–167.
27. Schmidt H., Alterskjær K., Karam B.D., Boucher O., Jones A., Kristjansson J.E., Niemeier U., Schulz M., Aaheim A., Benduhn F., Lawrence M., Timmreck C. Solar irradiance reduction to counteract radiative forcing from a quadrupling CO2: Climate responses simulated by four earth system models // Earth Syst. Dynam. 2012. V. 3. P. 63–78.
28. Kravitz B., Caldeira K., Boucher O. Robock A., Rasch P.J., Alterskjær K., Bou Karam D., Cole J.N.S., Curry C.L., Haywood J.M., Irvine P.J., Ji D., Jones A., Kristjánsson J.E., Lunt D.J., Moore J.C., Niemeier U., Schmidt H., Schulz M., Singh B., Tilmes S., Watanabe S., Yang S., Yoon J.-H. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) // J. Geophys. Res. 2013. V. 118. P. 8320–8332.
29. MacMartin D.G., Keith D.W., Kravitz B., Caldeira K. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing // Nat. Clim. Change. 2013. V. 3. P. 365–368.
30. Izrael Yu.A., Volodin E.M., Kostrykin S.V., Revokatova A.P., Ryaboshapko A.G. The ability of stratospheric climate engineering in stabilizing global mean temperatures and an assessment of possible side effects // Atmos. Sci. Lett. 2014. V. 15. P. 140–148.
31. Parhomenko V.P. Modelirovanie stabilizatsii global'nogo klimata upravlyaemymi vybrosami stratosfernogo aerozolya // Matematicheskoe modelirovanie i chislennye metody. 2014. N 2. P. 115–126.
32. Kravitz B., Robock A., Tilmes S., Boucher O., English J.M., Irvine P.J., Jones A., Lawrence M.G., MacCracken M., Muri H., Moore J.C., Niemeier U., Phipps S.J., Sillmann J., Storelvmo T., Wang H., Watanabe S. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results // Geosci. Model Dev. 2015. V. 8. P. 2279–2292.
33. Meinshausen M., Smith S.J., Calvin K., Daniel J.S., Kainuma M.L.T., Lamarque J.-F., Matsumoto K., Montzka S.A., Raper S.C.B., Riahi K., Thomson A., Velders G.J.M., van Vuuren D.P.P. The RCP green-house gas concentrations and their extensions from 1765 to 2300 // Clim. Change. 2011. V. 109. P. 213–241.
34. Jarvis A.J., Young P.C., Leedal D.T., Chotai A. A robust sequential CO2 emissions strategy based on optimal control of atmospheric CO2 concentrations // Clim. Change. 2008. V. 86. P. 357–373.
35. Jarvis A.J., Leedal D.T., Taylor C.J., Young P.C. Stabilizing global mean surface temperature: A feedback control perspective // Environ. Model. Software. 2009. V. 24. P. 665–674.
36. Ban-Weiss G.A., Caldeira K. Geoengineering as an optimization problem // Environ. Res. Lett. 2010. V. 5. 034009.
37. MacMartin D.G., Kravitz B., Keith D.W., Jarvis A. Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering // Clim. Dynam. 2014. V. 43. P. 243–258.
38. Kravitz B., MacMartin D.G., Leedal D.T., Rasch P.J., Jarvis A.J. Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering // Environ. Res. Lett. 2014. V. 9. P. 044006.
39. Gaskarov D.V., Kiselev V.B., Soldatenko S.A., Yusupov  R.M. Vvedenie v geofizicheskuyu kibernetiku. SPb: SPbGUVK. 1998. 165 p.
40. Soldatenko S. Weather and climate manipulation as an optimal control for adaptive dynamical systems // Complexity. 2017. V. 2017. ID 4615072. 12 p.
41. Gregory J.M., Mitchell, J.F.B. The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment // Geophys. Res. Lett. 1997. V. 24. P. 1943–1964.
42. Gregory J.M. Vertical heat transports in the ocean and their effect on time-dependent climate change // Clim. Dynam. 2000. V. 16. P. 501–515.
43. Held I.M., Winton M., Takahashi K., Delworth T., Zeng F., Vallis G.K. Probing the fast and slow compo-nents of global warming by returning abruptly to preindustrial forcing // J. Clim. 2010. V. 23. P. 2418–2427.
44. Geoffroy O., Saint-Martin D., Olivié D.J.L., Voldoire A., Bellon G., Tyteca S. Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments // J. Clim. 2012. V. 26. P. 1841–1857.
45. Taylor K. E., Stouffer R. J., Meehl G. A. An overview of CMIP5 and the experiment design // Bull. Am. Meteor. Soc. 2011. V. 93. P. 485-498.
46. Eliseev A.V., Mohov I.I., Karpenko A.A. Predotvrashchenie global'nogo potepleniya s pomoshch'yu kontroliruemyh emissij aerozolej v stratosferu: global'nye i regional'nye osobennosti otklika temperatury po raschetam s KM IFA RAN // Optika atmosf. i okeana. 2009. V. 22, N 6. P. 521–526; Eliseev A.V., Mokhov I.I., Karpenko A.A. Global warming mitigation by means of controlled aerosol emissions into stratosphere: Global and regional of temperature response as estimated in IAP RAS CM simulations // Atmos. Ocean. Opt. 2009. V. 22, N 4. P. 388–395.
47. Hansen J., Lacis A., Ruedly R., Sato M. Potential climate impact of Mount Pinatubo eruption // Geophys. Res. Lett. 1992. V. 19. P. 215–218.
48. Soldatenko S.A., Yusupov R.M. Tchuvstvitel'nost' nul'mernoj klimaticheskoj modeli i ee obratnye svyazi v kontekste problemy upravleniya pogodoj i klimatom Zemli // Tr. SPIIRAN. 2017. Iss. 3(52). P. 5–31.
49. Rasch P.J., Tilmes S., Turco R., Robock A., Oman L., Chen C.-C., Stenchikov G.L, Garcia R.R. An overview of geoengineering of climate using stratospheric sulphate aerosols // Phil. Trans. R. Soc. A. 2008. V. 366. P. 4007–4037.
50. Hansen J., Sato M., Ruedy R., Nazarenko L., Lacis A., Schmidt G.A., Russell G., Aleinov I., Bauer M., Bauer S., Bell N., Cairns B., Canuto V., Chandler M., Cheng Y., Del Genio A., Faluvegi G., Fleming E., Friend A., Hall T., Jackman C., Kelley M., Kiang N., Koch D., Lean J., Lerner J., Lo K., Menon S., Miller R., Minnis P., Novakov T., Oinas V., Perlwitz Ja., Perlwitz Ju., Rind D., Romanou A., Shindell D., Stone P., Sun S., Tausnev N., Thresher D., Wielicki B., Wong T., Yao M., Zhang S. Efficacy of climate forcing // J. Geophys. Res. 2005. V. 110. D18104.
51. Lenton T.M., Vaughan N.E. The radiative forcing potential of different climate geoengineering options // Atmos. Chem. Phys. 2009. V. 9. P. 5539–5561.
52. Pontryagin L.S., Boltyanskij V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal'nyh protsessov. M.: Nauka, 1969. 408 p.
53. Bryson A.E., Ho Y.-C. Applied optimal control: Optimization, estimation, and control. New York: John Wiley & Sons, 1975. 481 p.