Several methods for estimation of the visibility for fog forecasting, including the proposed by authors are discussed. To get necessary meteorological information, WRF-ARW model was used. The forecasts were estimated using the European network of synoptic observation data, with high spatial increments. The analysis of the methods in general showed satisfactory quality of prediction of this phenomenon.
fog, meteorological visibility, mesoscale modeling, transfer of moisture in the surface layer
1. Khromov S.P., Mamontova L.I. Meteorologicheskiy slovar'. L.: Gidrometeoizdat, 1974. 569 p.
2. Matveev L.T. Fizika atmosfery. L.: Gidrometeoizdat, 1965. 674 p.
3. Zverev A.S. Sinopticheskaya meteorologiya. L.: Gidrometeoizdat, 1977. 706 p.
4. Wilson C.T.R., B. Sc. (Vict.), M.A. (Cantab) Condensation of water vapour in the presence of dust-free air and other gases // Proc. Roy. Soc. London. 1897. V. 61, N 369–377. P. 240–242.
5. Petersen S. Analiz i prognoz pogody. L.: Gidrometeoizdat, 1961. 652 p.
6. Kohler M.A., Richards M.M. Multicapacity basin accounting for predicting runoff from storm precipitation // J. Geophys. Res. 1962. V. 67, N 13. P. 5187–5197.
7. Neiburger M., Wurtele M.G. On the nature and size of particles in haze, fog, and stratus of the Los Angeles region // Chem. Rev. 1949. V. 44, N 2. P. 321–335.
8. Dzhozef Dzh. Dzhordzh. Prognoz pogody dlya aviatsii. L.: Gidrometeoizdat, 1966. 518 p.
9. Petrenko N.V. Usovershenstvovanie metodiki prognoza advektivnogo tumana i vidimosti v etom tumane. Tr. Gidromet. SSSR. 1975, issue 162. P. 34–45.
10. Klyuchnikova L.A. K voprosu ob obrazovanii advektivnykh tumanov // Tr. GGO. 1956. N 60. P. 122.
11. Babenko Z.E. Usloviya obrazovaniya tumana i metodika ego prognoza v otdel'nykh rayonakh Sredney Azii: Avtoref. dis. … kand. geogr. nauk. Tashkent: Sredneaziatskiy regional'nyy nauchno-issledovatel'skiy institut im V.A. Bugaeva, 1961. 155 p.
12. Koschmieder H. Measurements of visibility at Danzig // Mon. Weather Rev. 1930. Т. 58, N 11. P. 439–444.
13. Houghton H.G., Radford W.H. On the measurement of drop size and liquid water content in fogs and clouds. Massachusetts: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1938. 31 p.
14. Meyson D.B., Nikanorova G.T., Protopopova V.S. Fizika oblakov. L.: Gidrometeoizdat, 1961. 542 p.
15. Bang C.H., Lee J.W., Hong S.Y. Predictability experiments of fog and visibility in local airports over Korea using the WRF model // J. KOSAE. 2008. V. 24, N E2. P. 92–101.
16. Stoelinga M.T., Warner T.T. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event // J. Appl. Meteorol. 1999. V. 38, N 4. P. 385–404.
17. Kunkel B.A. Parameterization of droplet terminal velocity and extinction coefficient in fog models // J. Clim. Appl. meteorol. 1984. V. 23. N 1. P. 34–41.
18. Rutledge S.A., Hobbs P. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands // J. Atmos. Sci. 1983. V. 40, N 5. P. 1185–1206.
19. Stallabrass J.R. Snow Property Measurement Workshop // Proc. National Research Council Associate Committee on Geotechnical Research.: Techn. memorandum. Canada. 1985. N 140. P. 389–410.
20. Marshall J.S., Palmer W.M. The distribution of raindrops with size // J. Meteorol. 1948. V. 5 P. 165–166.
21. Bieringer P.E., Donovan M., Robasky F., Clark D.A., Hurst J. A characterization of NWP ceiling and visibility forecasts for the terminal airspace // 12th Conf. Aviation, Range, and Aerospace Meteorology. Atlanta, GA. 2006. 14 p.
22. Wantuch F. Visibility and fog forecasting based on decision tree method // Idojárás. 2001. V. 105. P. 29–38.
23. Doran J.A., Roohr P.J., Beberwyk D.J., Brooks G.R., Gayno G.A., Williams R.T., Lewis J.M., Lefevre R.J. The MM5 at the Air Force Weather Agency – New products to support military operations // 8th Conf. Aviation, Range, and Aerospace Meteorology. Dallas, Texas. 1999. 1 p.
24. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., Powers J.G. A description of the advanced research WRF version 2. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research. Boulder; Colorado, USA, 2005. N NCAR/TN-468+STR. DOI: 10.5065/D68S4MVH.
25. Bychkova V.I., Ignatov R.Yu., Rubinshteyn K.G. Analiz teplovykh potokov na poverkhnosti po raschetam modeli WRF-ARW v polyarnykh oblastyakh // Uch. zap. Ros. gos. gidromet. un-ta. 2011. N 20. P. 42–55.
26. Smirnova M.M. Vliyanie dannykh izmereniy sodarov i temperaturnykh profilemerov na kachestvo chislennogo prognoza kharakteristik atmosfernogo pogranichnogo sloya: Avtoref. dis. kand. fiz.-mat. nauk. M.: Mosk. gos. un. im. M.V. Lomonosova, 2014. 19 p.
27. Grell G.A., Kuo Y.H., Pasch R.J. Semiprognostic tests of cumulus parameterization schemes in the middle latitudes // Mon. Weather Rev. 1991. V. 119. N 1. P. 5–31.
28. Milbrandt J.A., Yau M.K. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description // J. Atmos. Sci. 2005. V. 62, N 9. P. 3065–3081.
29. Bougeault P., Lacarrere P. Parameterization of orography-induced turbulence in a mesobeta-scale model // Mon. Weather Rev. 1989. V. 117, N 8. P. 1872–1890.
30. West R., Crisp D., Chen L. Mapping transformations for broadband atmospheric radiation calculations // J. Quant. Spectrosc. Radiat. Transfer. 1990. V. 43, N 3. P. 191–199.
31. Ek M.B., Mitchell K.E., Lin Y., Rogers E., Grun-mann P., Koren V., Gayno, Tarpley J.D. Implementa-tion of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model // J. Geophys. Res.: Atmos. 2003. V. 108, N D22. 16 p.