Vol. 33, issue 02, article # 7

Filei A. A. Development of optical parameters of volcanic cloud models for remote sensing of Earth from space. // Optika Atmosfery i Okeana. 2020. V. 33. No. 02. P. 127–134. DOI: 10.15372/AOO20200207 [in Russian].
Copy the reference to clipboard

The principle of creating models of optical parameters of volcanic clouds for use in problems of remote sensing is presented. The models are developed for a wide range of different volcanic rocks and their combinations with drops of water, ice crystals, and drops of aqueous solution of sulfuric acid. The following issues are considered: the principle of interaction of electromagnetic radiation with aerosol components of a volcanic cloud; mixing aerosol components of a volcanic cloud; the use of optical parameters to simulate radiation intensity at the top of the atmosphere. It is found that the choice of model directly affects the calculation mass and microphysical characteristics of volcanic ash.


volcanic ash, volume extinction coefficient, single scattering albedo, brightness temperature, satellite data


  1. Reid P.C., Hari R.E. Global impacts of the 1980s regime shift // Global Change Biol. 2016. V. 22. P. 682–703.
  2. Mccormick M.P., Thomason L.W., Trepte C.R. Atmospheric effects of the Mt Pinatubo eruption // Nature. 1995. V. 373(6513). P. 399–404.
  3. Casadevall T.J. A History of Ash Avoidance. 2015. 77 p. [Electronic resource]. URL: https://www.wmo.int/aemp/sites/default/files/P-02_10.00_Casadevall.pdf (last access: 25.09.2019).
  4. Miller T.P., Casadevall T.J. Volcanic ash: Hazards to aviation // Encyclopedia of Volcanoes. 2000. V. 1. P. 915–930.
  5. Clarisse L., Prata F. Chapter 11. Infrared sounding of volcanic Ash // Volcanic Ash. Elsevier, 2016. P. 189–215. DOI: 10.1016/B978-0-08-100405-0.00017-3.
  6. Dubuisson P., Herbin H., Minvielle F., Compiegne M., Thieuleux F., Parol F., Pelon J. Remote sensing of volcanic ash plumes from thermal infrared: A case study analysis from SEVIRI, MODIS and IASI instruments // Atmos. Meas. Tech. 2014. V. 7. P. 359–371.
  7. Prata F. Detecting and Retrieving Volcanic Ash from SEVIRI Measurements. Algorithm Theoretical Basis Document. 2013. 68 p. [Electronic resource]. URL: http://vast.nilu.no/media/cms_page_media/5/VAST_ATBD_SEVIRI_Ash_v1.0_NILU_1.pdf (last access: 25.09.2019).
  8. Prata A.J., Grant I.F. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand // Q. J. Roy. Meteorol. Soc. 2001. V. 127. P. 2153–2179.
  9. Watson I.M., Realmuto V.J., Rose W.I., Prata A.J., Bluth G.J.S., Gu Y., Bader C.E., Yu T. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer // J. Volcanol. Geotherm. Res. 2004. V. 135. P 75–89.
  10. Wen S., Rose W.I. Retrieval of sizes and total mass of particles in volcanic clouds using AVHRR bands 4 and 5 // J. Geophys. Res.: Atmos. 1994. V. 99. P. 5421–5431.
  11. Corradini S., Spinetti C., Carboni E., Tirelli C., Buongiorno M.F., Pugnaghi S., Gangale G. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements // J. Appl. Remote Sens. 2008. V. 2(1). 20 p.
  12. Pavolonis M., Heidinger A.K., Sieglaff J. Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements // J. Geophys. Res.: Atmos. 2013. V. 118, N 3. P. 1436–1458.
  13. Western L.M., Watson M.I., Francis P.N. Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud // Bull. Volcanol. 2015. V. 77(8). 12 p.
  14. Girina O.A., Lupyan E.A., Sorokin A.A., Mel'nikov D.V., Romanova I.M., Kashnitskij A.V., Uvarov I.A., Mal'kovskij S.I., Korolev S.P., Manevich A.G., Kramareva L.S. Kompleksnyj monitoring eksplozivnyh izverzhenij vulkanov Kamchatki // IViS DVO RAN. 2018. 192 p.
  15. Kylling A., Kristiansen N., Stohl A., Buras-Schnell R., Emde C., Gasteiger J. Impact of meteorological clouds on satellite detection and retrieval of volcanic ash during the Eyjafjallajökull 2010 and Grimsvötn 2011 eruptions: A modelling study // Atmos. Meas. Tech. Discuss. 2014. V. 7. P. 11303–11343.
  16. Ohtake T. Freezing points of H2SO4 aqueous solutions and formation of stratospheric ice clouds // Tellus B. V. 45, N 2. P. 138–144.
  17. Pollack J.B., Toon O.B., Khare B.N. Optical properties of some terrestrial rocks and glasses // Icarus. 1973. V. 19(3). P. 372–389.
  18. Remsberg E.E., Lavery D., Crawford B. Optical constants for sulfuric and nitric acids // J. Chem. Eng. Data. 1974. V. 19. P. 263–255.
  19. Hale G.M., Querry M.R. Optical constants of water in the 200-nm to 200-µm wavelength region // Appl. Opt. 1973. N 12. P. 555–563.
  20. Warren S.G. Optical constants of ice from the ultraviolet to the microwave // Appl. Opt. 1984. V. 23. P. 1206–1225.
  21. Oppenheimer C., Scaillet B., Robert S.M. Sulfur degassing from volcanoes: Source conditions, surveillance, plume chemistry and Earth system impacts // Rev. Mineral. Geochem. 2011. V. 73, N 1. P. 363–421.
  22. Sellitto P., Legras B. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols // Atmos. Meas. Tech. 2016. V. 9. P. 115–132.
  23. Prata A.J. Observations of volcanic ash clouds in the 10–12-micron window using AVHRR/2 Data // Int. J. Remote Sens. 1989. V. 10, N 4–5. P. 751–761.
  24. Wiscombe W. Improved Mie scattering algorithms // Appl. Opt. 1980. V. 19. P. 1505–1509.
  25. Mayer B., Kylling A., Emde C., Buras R., Hamann U., Gasteiger J., Richter B. LibRadtran User’s Guide. 2017. 155 p. [Electronic resource]. URL: http://www.libradtran.org/doc/libRadtran.pdf (last access: 25.09.2019).
  26. Roberts T.J., Vignelles D., Liuzzo M., Giudice G., Aiuppa A. The primary volcanic aerosol emission from Mt. Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry // Geochim. Cosmochim. Acta. 2017. V. 222. P. 74–93.
  27. Filej A.A. Avtomaticheskoe obnaruzhenie vulkanicheskogo pepla po sputnikovym dannym // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V. 16, N 4. P. 63–73.
  28. Dejrmendzhan D. Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymi chastitsami. M.: Mir, 1971. 303 p.
  29. Shifrin K.C. Rasseyanie sveta v mutnoj srede. M.-L.: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, 1951. 288 p.
  30. Van de Hulst H.C. Light Scattering by Small Particles. Dover Publication, 1981. 453 p.
  31. Klingmuller K., Steil B., Bruhl C., Tost H., Lelieveld J. Sensitivity of aerosol radiative effects to different mixing assumptions in the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate model // Geosci. Model Dev. 2014. V. 7. P. 2503–2516.
  32. Emde C., Buras R., Mayer B., Blumthaler M. The impact of aerosols on polarized sky radiance: Model development, validation, and applications // Atmos. Chem. Phys. 2010. V. 10. P. 383–396.
  33. Yu T., Rose W.I., Prata A.J. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using split window IR data from GOES and AVHRR // J. Geophys. Res. 2002. V. 107, N D16. 16 p.
  34. Liu X., Penner J.E. Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport mode // J. Geophys. Res. 2002. V. 107, N D12. 16 p.
  35. Ensor D.S., Pilat M.J. Calculation of smoke plume opacity from particulate air pollutant properties // J. Air Pollut. Control Assoc. 1971. V. 21, N 8. P. 496–501.
  36. Rybin A., Chibisova M., Webley P., Steensen T., Izbekov P., Neal C., Realmuto V. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles // Bull. Volcanol. 2011. V. 73. P. 1377–1392.
  37. Prata A.J. Infrared Radiative transfer calculations for volcanic ash clouds // Geophys. Res. Lett. 1989. V. 16, N 11. P. 1293–1296.
  38. Newman S.M., Clarisse L., Hurtmans D., Marenco F., Johnson B., Turnbull K., Havemann S., Baran A. J., O’Sullivan D., Haywood J. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements // J. Geophys. Res.: Atmos. 2012. V. 117, iss. D20. 19 p.
  39. Pierangelo C., Chedin A., Heilliette S., Jacquinet-Husson N., Armante R. Dust altitude and infrared optical depth from AIRS // Atmos. Chem. Phys. 2004. V. 4. P. 1813–1822.
  40. Kylling A., Kahnert M., Lindqvist H., Nousiainen T. Volcanic ash infrared signature: Porous non-spherical ash particle shapes compared to homogeneous spherical ash particles // Atmos. Meas. Tech. 2014. V. 7. P. 919–929.