Vol. 33, issue 03, article # 13

Sosnin E. A., Kuznetsov V. S., Panarin V. A., Skakun V. S., Tarasenko V. F. Laboratory modeling of the influence of volcanic matter on the formation of transient phenomena near the boundary between the middle and lower atmosphere. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 227–231. DOI: 10.15372/AOO20200313 [in Russian].
Copy the reference to clipboard

It was shown that heating of the volcanic material taken on the Etna volcano (Italy) by apokampic discharge reduces the voltage at which a positive streamer, the apokamp, starts from the discharge channel and increases its propagation speed. The luminescence spectra show that these processes are accompanied by the emission of easily ionizable K and Na, which is consistent with data on the elemental composition of Etna samples. Based on the data obtained, a hypothesis is proposed that in places of increased volcanic activity at altitudes of 10–18 km (at the level of the troposphere), the appearance probability of blue jets and starters increases.


apokampic discharge, volcanic matter, blue stream, transient light phenomena


  1. Mishin E.V. Milikh G.M. Blue jets: Upward lightning // Space Sci. Rev. 2008. V. 137, N 4. P. 473–488.
  2. Siingh D., Singh R.P., Kumar S., Dharmaraj T., Singh A.K., Patil M.N., Singh Sh. Lightning and middle atmospheric discharges in the atmosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 134, N 11. P. 78–101.
  3. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskij P.M., Samohvalov I.V. Elektroopticheskie yavleniya v atmosfere: uchebnoe posobie. Tomsk: Izd-vo NTL, 2015. 316 p.
  4. Bekryaev V.I. Molnii, sprajty i dzhety. SPb.: Izd-vo RGGMU, 2009. 96 p.
  5. Pancheshnyi S., Nudnova M., Starikovskii A. Develop­ment of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation // Phys. Rev. E. 2005. V. 71, N 1. P. 016407.
  6. Strikovskij A.V., Evtushenko A.A., Gushchin M.E., Korobkov S.V., Kostrov A.V. Impul'snyj vysokovol'tnyj razryad v vozduhe s gradientom davleniya // Fizika plazmy. 2017. V. 43, N 10. P. 866–873.
  7. Opaits D.F. Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Study of streamers in gradient density air: Table top modeling of red sprites // Geophys. Res. Lett. 2010. V. 37, N 14. L14801.
  8. Sosnin E.A., Naidis G.V., Tarasenko V.S., Skakun V.S., Panarin V.A., Babaeva N.A., Baksht E.Kh., Kuznetsov V.S. Apokamps produced by repetitive discharges in air // Phys. Plasm. 2018. V. 25, N 8. P. 083513.
  9. Sosnin E.A., Panarin V.A., Skakun V.S., Baksht E.Kh., Tarasenko V.F. Dynamics of apokamp-type atmospheric pressure plasma jets // Eur. Phys. J. D. 2017. V. 71, N 2. P. 25.
  10. Sosnin E.A., Najdis G.V., Tarasenko V.F., Skakun V.S., Panarin V.A., Babaeva N.Yu. O fizicheskoj prirode apokampicheskogo razryada // ZhETF. 2017. V. 152, N 5. P. 1081–1087.
  11. Sosnin E.A., Panarin A.A., Skakun V.S., Tarasenko V.F. Modelirovanie golubyh struj i sprajtov s pomoshch'yu apokampa, formiruemogo pri ponizhennyh davleniyah vozduha // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 855–868.
  12. Sosnin E.A., Najdis G.V., Tarasenko V.F., Babaeva  N.Yu., Panarin V.A., Skakun V.S. Sootnoshenie intensivnostej polos 2P i 1P molekulyarnogo azota v usloviyah apokampicheskogo razryada pri razlichnyh davleniyah vozduha // Optika atmosf. i okeana. 2018. V. 31, N 10. P. 794–797.
  13. Sosnin E.A., Baksht E.H., Kuznetso V.S., Panari V.A., Skakun V.S., Tarasenko V.F. Laboratornoe modelirovanie golubyh struj s pomoshch'yu apokampicheskogo razryada v gertsovom diapazone chastot // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 585–590; Sosnin E.A., Baksht E.Kh., Kuznetsov V.S., Panarin V.A., Skakun V.S., Tarasenko V.F. Laboratory simulation of blue jets with apokampic discharge in the Hz frequency range // Atmos. Осean. Opt. 2019. V. 32, N 6. P. 710–715.
  14. Sosnin E.A., Panarin V.A., Skakun V.S., Tarasenko V.F., Kozyrev A.V., Kozhevnikov V.Yu., Sitnikov A.G., Kokovin A.O., Kuznetsov V.S. Apokampicheskij razryad: usloviya obrazovaniya i mekhanizmy formirovaniya // Izv. vuzov. Fizika. 2019. V. 62, N 7. P. 182–189.
  15. Panarin V.A., Skakun V.S., Sosnin E.A., Tarasenko V.F. Laboratornaya demonstratsiya v vozduhe krasnyh i golubyh diffuznyh mini-struj // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 243–253.
  16. Kozlov K., Wagner H., Brandenburg R., Michel P.J. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure // J. Phys. D. 2001. V. 34, № 21. P. 3164–3176.
  17. Tanguy J.C. Contributions to mineralogy and petrology tholeiitic basalt magmatism of Mount Etna and its relations with the alkaline series // Contrib. Mineral. Petrol. 1978. V. 66, № 1. P. 51–67.
  18. Horwell C.J., Sargent P., Andronic D., Lo Castro M.D., Tomatis M., Hillman S.E., Michnowicz S.A.K., Fubini B. The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy // J. Appl. Volcanology. 2017. V. 6, № 1. 16 p.
  19. Newhall C.A., Self S. The volcanic explosiviry index (VEI): An estimate of the explosive magnitude for historical volcanism // J. Geophys. Res. 1982. V. 87, iss. C2. P. 1231–1238.
  20. Rukovodstvo po oblakam vulkanicheskogo pepla, radioaktivnyh materialov i toksicheskih himicheskih veshchestv. Doc. 9691 AN/954. Izd. 2 // Mezhdunarodnaya organizatsiya grazhdan-skoj aviatsii, 2007. 202 p.
  21. Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., Siingh D. Profuse activity of blue electrical discharges at the tops of thunderstorms // Geophys. Res. Lett. 2017. V. 44, N 1. P. 496–503.
  22. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph / eds. J.J. Mahoney, M.F. Coffin. Washington, D.C.: American Geophysical Union, 1997. 438 p.
  23. Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds. Doc 9691 AN/954. Internftional Civil Aviation Organization, 2007. 162 p.
  24.  Akiko Goto A., Horie T., Ohba T., Fujimaki H. XRF analysis of major and trace elements for wide compositional ranges from silicate rocks to carbonate rocks using low dilution glass beads // Japan. Magaz. Mineralog. Petrolog. Sci. 2008. V. 31, N 3. P. 162–173.
  25. Chen A.B., Kuo Ch.-L., Lee Y.-J., Su H.-T., Hsu R.-R., Chern J.-L., Frey H.U., Mende S.B., Takahashi Y., Fukunishi H., Chang Y.-Sh., Liu T.-Y., Lee L.-Ch. Global distributions and occurrence rates of transient luminous events // J. Geophys. Res. 2008. V. 113, N A08. P. A08306.