Vol. 33, issue 03, article # 4

Belskaya E. V., Bokhan P. A., Gugin P. P., Zakrevsky Dm. E. Lasing characteristics of a thallium-ion laser excited by an electron beam. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 177–182. DOI: 10.15372/AOO20200304 [in Russian].
Copy the reference to clipboard
Abstract:

When the Ne + Tl gas-vapor mixture was excited by an electron beam, laser generation was obtained and investigated with excitation of the upper levels in the charge exchange reaction at ion lines with l = 1,922; 1,385; 0,595; 0,695 and 0,707 mm; the lasing at the first two lines was obtained for the first time. In the studied range of pump parameters, a linear dependence of the lasing power on the pumping power was revealed, indicating the efficiency of electron-beam excitation. An average radiation power of 44 mW was reached at l = 595 nm at a pulse repetition frequency of 1 kHz with an efficiency of ~ 0,06%. A numerical simulation of the laser energy characteristics was carried out.

Keywords:

lasing, electron beam, thallium ion, charge exchange reaction, ion lasing lines, numerical simulation

References:

  1. Gudzenko L.I., Yakovlenko S.I. Plazmennye lazery. M.: Atomizdat, 1978, 256 p.
  2. Ivanov I.G., Latush E.L., Sem M.F. Ionnye lazery na parah metallov. M.: Energoatom-izdat, 1990. 259 p.
  3. Bohan P.A. Nakachka gazovyh lazerov ubegayushchimi elektronami, generiruemymi v otkry-tom razryade // Entsiklopediya nizkotemperaturnoj plazmy. M.: Fizmatlit, 2005. V. XI, glava 4. P. 316–337.
  4. Little C.E. Metal vapour lasers: Physics, engineering and applications. Wiley-VCH. 646 p.
  5. Bohan P.A. Protsessy relaksatsii i vliyanie metastabil'nyh sostoyanij atomov i ionov metallov na mekhanizm generatsii i energeticheskie harakteristiki lazerov // Kvant. elektron. 1986. V. 13, N 9. P. 1837–1847.
  6. Bohan P.A. Stolknovitel'nye lazery na ionah Еu+ and Са+ s vysokoj energiej izlucheniya // Pis'ma v ZHTF. 1986. V. 12, N 3. P. 161.
  7. Homich V.Yu., Yamshchikov V.A. Razvitie metodov polucheniya puchkov ubegayushchih elektronov dlya nakachki gazovyh lazerov, generiruyushchih UF-izluchenie // Prikl. fiz. 2010. N 6. P. 77–88.
  8. Belskaya E.V., Bokhan P.A., Zakrevsky D.E., Lavrukhin M.A. Influence of molecular gases on the lasing on the self-terminating He (21P10-21S0) transition // IEEE J. Quantum Electron. 2011. V. 47, № 6. P. 795–802.
  9. Bohan P.A., Gugin P.P., Zakrevskij D.E. Lazer na parah bromida medi s vozbuzhdeniem elektronnym puchkom // Kvant. elektron. 2016. V. 46, N 9. P. 782–786.
  10. Zinchenko S.P., Ivanov I.G., Sem M.F. Spectral and power output characteristics of the pulsed He-Hg+ and Ne-Tl+ hollow-cathode lasers with charge-transfer excitation // Proc. SPIE. 1993. V. 2110. P. 150–164.
  11. Ivanov I.G., Sem M.F. Generatsiya na ionnyh perekhodah talliya i galliya // Elektronnaya tekhnika. Iss. 4. 1974. N 2. P. 12–16.
  12. Glozeva M.G., Sabotinov N.V., Janossy M. High current regime of the helical hollow cathode Ne-TlCl and He-Kr lasers // Opt. Quantum Electron. 1986. V. 18, N 2. P. 455–459.
  13. Ivanov I.G., Sem M.F. Kinetika aktivnyh sred He−Hg, Ne−Tl i Ne−Ga impul'snyh ionnyh lazerov s razryadom v polom katode // Optika atmosf. i okeana. 2001. V. 14, N 11. P. 1016–1021.
  14. Zinchenko S.P., Ivanov I.G. Impul'snye ionnye lazery s polym katodom: parametry nakachki i generatsii // Kvant. elektron. 2012. V. 42, N 6. P. 518–523.
  15. Bohan P.A., Sorokin A.R. Otkrytyj razryad, generiruyushchij elektronnyj puchok: mekhanizm, svojstva i ispol'zovanie dlya nakachki lazerov srednego davleniya // ZhTF. 1985. V. 55, N 1. P. 88–95.
  16. Bokhan P.A., Zakrevsky Dm.E., Gugin P.P. Generation of high-current electron beam in a wide-aperture open discharge // Phys. Plasma. 2011. V. 18, N 10. P. 103112.
  17. Syts'ko Yu.I., Yakovlenko S.I. Kinetika ionizatsii i vozbuzhdeniya gaza zhestkim istochnikom // Fizika plazmy. 1976. V. 2, Issue 1. P. 63–71.
  18. Molisch A.F., Oehry B.P., Schupita W., Magerl G.J. Radiation-trapping in cylindrical and spherical geometries // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 49, N 4. P. 361–370.
  19. Henderson M., Curtis L.J. Lifetime measurements in Tl II // J. Phys. B: Atom. Mol. Opt. Phys. 1996. V. 29, N 17. P. L629–L634.
  20. Andersen T., Sorensen G. Systematic study of atomic lifetimes in gallium, indium, and thallium measured by the beam-foil technique // Phys. Rev. A. 1972. V. 5, N 6. P. 2447–2451.
  21. Brage T., Proffitt Ch.R., Leckrone D.S. Relativistic ab initio calculations of oscillator strengths and hyperfine structure constants in Tl II // J. Phys. B: Atom. Mol. Opt. Phys. 1999. V. 32, N 13. P. 3183–3192.
  22. Andersen R.J., Lee E.T. P., Lin Ch.C. Electron Excitation Functions of Mercury // Phys. Rev. 1967. V. 157, N 1. P. 31–40.
  23. Sobel'man I.I. Vvedenie v teoriyu atomnyh spektrov. M.: Nauka, 1977. 320 p.
  24. Vajnshtejn L.A., Sobel'man I.I., Yukov E.A. Secheniya vozbuzhdeniya atomov i ionov elek-tronami. M.: Nauka, 1973. 144 p.
  25. Wang Ch., Sahay P., Scherrer S.T. A new optical method of measuring electron impact excitation cross section of atoms: Cross section of the metastable 6s6p 3P0 level of Hg // Phys. Lett. A. 2011. V. 375, N 24. P. 2366–2370.
  26. Kim Y. Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms // Phys. Rev. A. 2001. V. 64, N 3. P. 032713.
  27. Hanne G.H. What really happens in the Franck–Hertz experiment with mercury? // Am. J. Phys. 1988. V. 56, N 8. P. 696–696.
  28. Suzuki S., Kuzuma K., Iton H. Electron collision cross section of mercury // J. Plasma Fusion Res. Series. 2006. V. 7. P. 314–318.
  29. Kenty C. Production of 2537 Radiation and the Role of Metastable Atoms in an Argon‐Mercury Discharge // J. Appl. Phys. 1950. V. 21, N 12. P. 1309–1318.
  30. Batenin V.M., Bohan P.A., Buchanov V.V., Evtushenko G.S., Kazaryan M.A., Karpuhin V.T., Klimovskij I.I., Malikov M.M. Lazery na samoogranichennyh perekhodah atomov metallov. V. 2. M.: Fizmatlit, 2011. 616 p.
  31. Casperson L.W. Laser power calculations: sources of error // Appl. Opt. 1980. V. 19, N 3. P. 422–434.
  32. Aleshkevich V.A. Kurs obshchej fiziki. Optika. M.: Fizmatlit, 2011. 320 p.