Vol. 33, issue 03, article # 7

Yudin N. N., Dyomin V. V., Soldatov A. N., Shumeiko A. S., Yudin N. A. On the possibility of generating THz radiation at a difference frequency in a ZnGeP2 single crystal when pumping with strontium vapor laser radiation. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 192–198. DOI: 10.15372/AOO20200307 [in Russian].
Copy the reference to clipboard
Abstract:

The conditions for the formation of THz radiation in ZnGeP2 single crystals when generating a difference frequency are considered. It is shown that two-frequency laser pumping sources with lasing pulse duration of ~ 1 ns are required to implement effective THz radiation. It is suggested to use a “generator – amplifier” system of a strontium vapor laser (at the Sr I transitions in the region 3 mm and Sr II in the region 1 mm) as such a source of IR radiation. The conditions of population inversion are considered, under which the lasing pulse duration is ~ 1 ns in the active medium of the strontium vapor laser. It is shown that the use of the “generator –amplifier” system can increase the average lasing power of the strontium vapor laser in proportion to the increase in the volume of active medium of the amplifier.

Keywords:

strontium vapor laser, differential frequency generation, terahertz radiation

References:

  1. Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G.S., Park J., Temkin R.J. Vacuum electronic high power terahertz sources // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1, N 1. P. 54–75.
  2. Liu J., Dai J., Chin S.L., Zhang X.C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases // Nat. Photonics. 2010. V. 4, N 9. P. 627–631.
  3. Rosch M., Scalari G., Beck M., Faist J. Ultra-broad­band THz quantum cascade laser operating with regular comb teeth in continuous wave operation. URL: https://doi.org/10.1364/MICS.2013.MTh4B.5 (last access: 23.12.2019).
  4. Geng L.J., Qu Y.C., Zhao W.J., Du J. Highly efficient and compact cavity oscillator for high-power, optically pumped gas terahertz laser // Opt. Lett. 2013. V. 38, N 22. P. 4793–4796.
  5. Creeden D., McCarthy J.C., Ketteridge P.A., South­ward T., Schunemann P.G., Komiak J.J., Dove W., Chicklis E.P. Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP // IEEE J. Sel. Top. Quantum. Electron. 2007. V. 13, N 3. P. 732–736.
  6. Kitaeva G.Kh. Terahertz generation by means of optical lasers // Laser Phys. Lett. 2008. V. 5, N 8. P. 559–576.
  7. Dmitriev V.G., Gurzadyan G.G., Nikogosyan D.N. Handbook of Nonlinear Optical Crystals. Berlin, New York: Springer. 1999. V. 64. 413 p.
  8. Soldatov A.N., Sabotinov N.V., Latush E.L., Chebotarev G.D., Vuchkov N.K., Yudin N.A. Strontium and Calcium Vapour Lasers. Sofia: Academic Publishing House, 2013. V. I. 293 p.
  9. Soldatov A.N., Sabotinov N.V., Latush E.L., Chebo­tarev G.D., Vuchkov N.K., Yudin N.A. Strontium and Calcium Vapour Lasers. Sofia: Academic Publishing House, 2014. V. II. 322 p.
  10. Nikogosyan D. Nonlinear Optical Crystals: A Complete Survey. New York: Springer, 2005. 440 p.
  11. Kumbhakar P., Kobayashi T., Bhar G. Sellmeier dispersion relations for phase-matched terahertz generation in ZnGeP2 // Appl. Opt. 2004. V. 43, N 16. P. 3324–3328.
  12. Aggarwal R.L., Lax B. Nonlinear Infrared Generation / Shen Y.R. (ed.) New York: Academic, 1977. 28 p.
  13. Verozubova G.A., Okunev A.O., Stashchenko V.A. Vyrashchivanie nelinejno-opticheskogo mate-riala ZnGeP2 i ego defektnaya struktura // Vestn. NovGU. 2015. N 3. Pt. 2. P. 40–46.
  14. Chuchupal S.V., Komandin G.A., Zhukova E.S., Prohorov A.S., Porodinkov O.E., Spektor I.E., Shakir Yu.A., Gribenyukov A.I. Mekhanizmy formirovaniya poter' v nelinejno-opticheskih kristallah ZnGeP2 v teragertsevoj oblasti chastot // Fizika tverdogo tela. 2014. V. 56, N 7. P. 1338–1344.
  15. Apollonov V.V., Gribenyukov A.I., Korotkova V.V., Suzdal'tsev A.G., Shakir Yu.A. Vychitanie chastot izlucheniya СО2-lazerov v kristalle ZnGeP2 // Kvant. elektron. 1996. V. 26, N 6. P. 483–484.
  16. Zemskov K.I., Isaev A.A., Kazaryan M.A., Petrash G.G., Rautian S.G. Primenenie neustojchi-vyh rezonatorov dlya polucheniya difraktsionnoj raskhodimosti izlucheniya impul'snyh ga-zovyh lazerov s bol'shim usileniem // Kvant. elektron. 1974. V. 1, N 4. P. 863–869.
  17. Isaev A.A., Kazaryan M.A., Petrash G.G., Rautian S.G. Szhimayushchiesya puchki v teleskopicheskih neustojchivyh rezonatorah // Kvant. elektron. 1974. V. 1, N 6. P. 1379–1388.
  18. Evtushenko G.S., Kirilov A.E., Kruglyakov V.L., Polunin Yu.P., Soldatov A.N. Upravlenie dlitel'nost'yu generatsii lazera na parah medi // ZHurn. prikl. spektroskop. 1988. V. 49, N 5. P. 745–751.
  19. Polunin Yu.P., Yudin N.A. Upravlenie harakteristikami izlucheniya lazera na parah medi // Kvant. elektron. 2003. V. 33. N 9. P. 833–835.
  20. Yгdin N.A., Yгdin N.N. Effektivnost' nakachki aktivnoj sredy lazerov na parah metal-lov: gazorazryadnye trubki s elektrodami v goryachej zone razryadnogo kanala // Izv. vuzov: Fizika. 2016. V. 59, N 6. P. 49–56.
  21. Vasilyak L.M., Kostyuchenko S.V., Kudryavtsev N.N., Filyugin I.V. Vysokoskorostnye volny ionizatsii pri elektricheskom proboe // Uspekhi fiz. nauk. 1994. V. 164. P. 263–286.