Vol. 33, issue 03, article # 8

Trigub M. V., Malakhov D. V., Stepakhin V. D., Evtushenko G. S., Balabanov D. A., Skvotsova N. N. High-speed imaging of plasmachemical synthesis in fast-flowing chain processes initiated by gyrotron radiation. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 199–204. DOI: 10.15372/AOO20200308 [in Russian].
Copy the reference to clipboard
Abstract:

A laboratory prototype of a complex for high-speed visual-optical diagnostics of plasma-chemical synthesis in powder mixtures is described. The processes are initiated by microwave radiation of a gyrotron. The laboratory prototype allows imaging processes in the reactor and spectra of the resulting radiation. The prototype includes video cameras, spectrometers, and a synchronization system and suggests a possibility of installing an active filtration system based on metal vapor active media. The resulted images of the process of synthesis of various ceramic micro- and nanoparticles are presented. It is shown that the use of temporal filtering of optical images does not completely suppress the background radiation impact.

Keywords:

imaging, laser monitor, high-temperature synthesis, plasma-chemical reactor, gyrotron

References:

  1. Semenov N.N. Razvitie teorii tsepnyh reaktsij i teplovogo vosplameneniya. M.: Znanie, 1969. 95 p.
  2. Tavadze G.F., Shteinberg A.S., Rusanova M. Production of advanced materials by methods of self-propagating high-temperature synthesis. Heidelberg; New York: Springer, 2013. 156 p.
  3. Boron science: new technologies and applications // ed. Hosmane N.S. Boca Raton. FL: CRC Press, 2012. 850 p.
  4. Thostenson E.T., Chou T.-W. Microwave processing: Fundamentals and applications // Composites, Part A. 1999. V. 30, N 9. P. 1055–1071.
  5. Ivanovskij A.L. Neuglerodnye nanotrubki: sintez i modelirovanie // Uspekhi himii. 2002. V. 71, N 3. P. 203–224.
  6. Batanov G.M., Borzosekov V.D., Golberg D., Iskhakova L.D., Kolik L.V., Konchekov E.M., Kharchev N.K., Letunov A.A., Malakhov D.V., Milovich F.O., Obraztsova E.A., Petrov A.E., Ryabikina I.G., Sarksian K.A., Stepakhin V.D., Skvortsova N.N. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge // J. Nanophotonics. 2016. V. 10, N 1. P. 012520.
  7. Akhmadullina N.S., Skvortsova N.N., Obraztsova E.A., Stepakhin V.D., Konchekov E.M., Letunov A.A., Konovalov A.A., Kargin Y.F., Shishilov O.N. Plasma-chemical processes under high-power gyrotron’s discharge in the mixtures of metal and dielectric powders // Chem. Phys. 2019. V. 516. P. 63–70.
  8. Kuznetsov A.P., Buzhinskij R.O., Gubskij K.L., Savelov A.S., Sarantsev S.A., Terekhin A.N. Vizualizatsiya plazmoindutsirovannyh protsessov proektsionnoj sistemoj s usilitelem yarkosti na osnove lazera na parah medi // Fizika Plazmy. 2010. V. 36, N 5. P. 463–472.
  9. Trigub M.V., Platonov V.V., Osipov V.V., Evtushenko T.G., Evtushenko G.S. Laser monitors for high speed imaging of materials modification and production // Vacuum. 2017. V. 143. P. 486–490.
  10. Letunov A.A. ., Skvortsova N.N., Ryabikina I.G., Batanov G.M., Borzosekov V.D., Kolik L.V., Konchekov E.M., Malahov D.V., Petrov A.E., Sarksyan K.A., Stepahin V.D., Harchev N.K. Evolyutsiya temperatury i svecheniya v impul'snom mikrovolnovom razryade v poroshkah molibden-bor // Inzhenernaya Fizika. 2013. N 10. P. 36–43.
  11. Handbook of Laser Technology and Applications / ed. C.E. Webb, J.D.C. Jones. Bristol, Philadelphia: Institute of Physics, 2004. 2 p.
  12. Trigub M.V., Platonov V.V., Fedorov K.V., Evtushenko G.S., Osipov V.V. CuBr-lazer v zadachah vizualizatsii protsessov polucheniya nanomaterialov // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 249–253; Trigub M.V., Platonov V.V., Fedorov K.V., Evtushenko G.S., Osipov V.V. CuBr laser for nanopowder production visualization // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 376–380.
  13. Abramov D.V., Areklyan S.M., Galkin A.F., Kvacheva L.D., Klimovskij I.I., Kononov M.A., Mihalitsyn L.A., Kucherik A.O., Prokoshev V.G., Savranskij V.G. Plavlenie ugleroda, nagrevaemogo skontsentrirovannym lazernym izlucheniem v vozduhe pri atmosfernom davlenii i temperature, ne prevyshayushchej 4000 K // Pis'ma v ZhETF. 2006. V. 84, N 5. P. 315.
  14. Evtushenko G.S., Trigub M.V., Gubarev F.A., Evtushenko T.G., Torgaev S.N., Shiyanov D.V. Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting // Rev. Sci. Instrum. 2014. V. 85, N 3. P. 033111.
  15. Dimaki V.A., Sokovikov V.G., Torgaev S.N., Trigub M.V., Troitskij V.O., Shiyanov D.V. Lazery na parah metallov // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 741–752; Dimaki V.A., Sokovikov V.G., Torgaev S.N., Trigub M.V., Troitskii V.O., Shiyanov D. Metal vapor lasers // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 69–79.
  16. Kharchev N.K., Batanov G.M., Kolik L.V., Malakhov D.V., Petrov A.Y., Sarksyan K.A., Skvortsova N.N., Stepakhin V.D., Belousov V.I., Malygin S.A., Tai Y.M. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter // Rev. Sci. Instrum. 2013. V. 84, N 1. P. 013507.
  17. Batanov G.M., Berezhetskaya N.K., Borzosekov V.D., Iskhakova L.D., Kharchev N.K., Kolik L.V., Konchekov E.M., Letunov A.A., Malakhov D.V., Obraztsova E.A., Obraztsova E.D., Petrov A.E., Sarksian K.A., Skvortsova N.N., Stepakhin V.D., Vasileva E.A., Zolotukhin A.A. Boron nitride and titanium diboride synthesis initiated by microwave discharge in Ti–B powder mixture in nitrogen atmosphere // J. Nanoelectron. Optoelectron. 2013. V. 8, N 1. P. 58–66.
  18. Trigub M.V., Torgaev S.N., Evtushenko G.S., Troitskij V.O., Shiyanov D.V. Bistaticheskij lazernyj monitor // Pis'ma v ZhTF. 2016. V. 42, iss. 12. P. 51–56.