Vol. 33, issue 05, article # 2

Starikov V. I. The broadening of Н2О, СО, and СО2 spectral lines confined in aerogel and xerogel nanoporous. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 334–341. DOI: 10.15372/AOO20200502 [in Russian].
Copy the reference to clipboard
Abstract:

The calculation results of the broadening of absorption lines of Н2О, СО, and СО2 confined in long cylindrical and spherical porous xerogel and aerogel 20 to 90 nm diameter at a room temperature and pressures from 1 and 50 mlb are presented.  The collisions of free Н2О, СО, and СО2 molecules with walls and with physically adsorbed on the surface molecules are discussed. The surface density of the adsorbed centers in porous silica aerogel is estimated. The comparison with the aviable experimental data is discussed.

Keywords:

water vapor, carbon oxide, carbon dioxide, half-width of spectral lines, aerogel, xerogel, nanoporous

References:

  1. Wagner P.E., Somers R.M., Jenkins J.L. Line broadening and relaxation of three microwave transitions in ammonia by wall and intermolecular collisions // J. Phys. B. 1981. V. 14, iss. 24. P. 4763–4770.
  2. Luijendijk S.C.M. The effect of wall collisions on the shape of microwave absorption lines // J. Phys. B. 1975. V. 8, iss. 18. P. 2995–3000.
  3. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, iss. 25. P. 26062–26067.
  4. Svensson T., Lewander M., Svanberg S.. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, iss. 16. P. 16460–16473.
  5. Hartmann J.-M., Boulet C., Vander Auwera J., El Hamzaoui H., Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule–wall to molecule–mo­lecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
  6. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87, iss. 3. P. 032510-1–10.
  7. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, iss. 2. P. 147–154.
  8. Lugina N.E., Starikov V.I. Ushirenie kolebatel'no-vrashchatel'nyh linij pogloshcheniya molekul uglekislogo i ugarnogo gazov vsledstvie soudarenij so stenkami // Izv. vuzov. Fizika. 2012. V. 55, N 6. P. 657–663.
  9. Solodov A.M., Petrova T.M., Ponomarev Yu.N., Solodov A.A., Starikov V.I. Fur'e-spektroskopiya vodyanogo para, nahodyashchegosya v ob"eme nanopor aerogelya: izmereniya i raschety // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 378–386; Solodov A.M., Petrova T.M., Ponomarev Yu.N., Solodov A.A., Starikov V.I. Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 1. Measurements and calculations // Atmos. Ocean. Opt. 2014, V. 27, N 4. P. 372–380.
  10. Solodov A.M., Petrova T.M., Solodov A.A., Starikov V.I. Fur'e-spektroskopiya vodyanogo para, nahodyashchegosya v ob"eme nanopor aerogelya. Part 2: Raschet ushirenij linij i sdviga spektral'nyh linij pri stolknoveniyah s adsorbirovannymi molekulami // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 32–36; Solodov A.M., Petrova T.M., Solodov A.A., Starikov V.I. Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 2. Calculation of Broadening and Shift of Spectral Lines by Adsorbed Molecules // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 232–235.
  11. Solodov A.A, Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the relaxation dependence of line half-width for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
  12. Starikov V.I., Solodov A.A. Ushirenie linij okisi ugleroda v ob"eme nanopor aerogelya // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 269–273; Starikov V.I., Solodov A.A. Line broadening of carbon oxide in the volume of aerogel nanopores // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 417–421.
  13. Starikov V.I. Ushirenie i sdvig linij pogloshcheniya vodyanogo para i okisi ugleroda v usloviyah nanopor // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 1–9; Starikov V.I. Water vapor and carbon monoxide broadening and line shifts inside aerogel nanopores // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 266–274.
  14. Solodov A.A, Petrova T.M., Ponomarev Yu.N., Solodov A.M., Shalygin A.S. Vrashchatel'naya zavisimost' polushirin linij fundamental'noj polosy 00011-0001 uglekislogo gaza, nahodyashchegosya v nanoporah aerogelya // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 516–518; Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Shalygin A.S. Rotational dependence of line half-width for 0 0 0 11–0 0 0 01 fundamental band of CO2 confined in aerogel nanopores // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 619–621.
  15. Tauns Ch., Shavlov A. Radiospektroskopiya. M.: Inostrannaya literatura. 1959. 757 p.
  16. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73, N 11. P. 5432–5450.
  17. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. 1979. V. 40, iss. 10. P. 923–943.
  18. Radtsig A.A., Smirnov B.M. Spravochnik po atomnoj i molekulyarnoj fizike. M.: Atomizdat, 1980. 240 p.
  19. Kisilev A.V., Lygin V.I. Infrakrasnye spektry poverhnostnyh soedinenij. M.: Nauka, 1972. 459 p.