Vol. 33, issue 08, article # 5

Biryukov E. Yu., Kostsov V. S. Application of a regression algorithm to the problem of studying horizontal inhomogeneity of the cloud liquid water path on the basis of the ground-based microwave observations in the angular scanning mode. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 613-620. DOI: 10.15372/AOO20200805 [in Russian].
Copy the reference to clipboard

The results of the cloud liquid water path (LWP) “land–sea” gradient retrieval from ground-based measurements of downwelling microwave radiation near the coastline of the Gulf of Finland in Saint-Petersburg region are presented. The measurements were carried out with the RPG-HATPRO radiometer operating at the Faculty of Physics of Saint-Petersburg State University in the angular scanning mode. The inverse problem was solved by the linear regression method. Different statistical models of cloud cover were used for training the algorithm. The LWP gradient mean values were derived over the winter and summer periods of seven years of observations. The results have shown positive “land–sea” LWP gradient (higher values over land and lower over sea) during both summer and winter seasons. This fact is qualitatively consistent with available satellite data.


cloud liquid water path, troposphere, horizontal inhomogeneity of atmosphere parameters, remote sensing, microwave radiometer, inverse problems, regression algorithm


  1. Stephens G.L. Cloud feedbacks in the climate system: a critical review // J. Climate. 2015. V. 18. P. 237–273. DOI: 10.1175/JCLI-3243.1.
  2. Zhang T., Stamnes K., Bowling S.A. Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and Subarctic // J. Climate. 1996. V. 9. P. 2110–2123.
  3. Beesley J.A. Estimating of the effect of clouds on the arctic surface energy budget // J. Geophys. Res. 2000. V. 105, N D8. P. 10103–10117.
  4. Remote Sensing Systems. [Electronic resource] URL: http://remss.com/measurements/cloud-liquid-water-content (last access: 3.03.2020).
  5. Stengel M., Kniffka A., Meirink J.F., Lockhoff M., Tan J., Hollmann R. CLAAS: the CM SAF cloud property data set using SEVIRI // Atmos. Chem. Phys. 2014. V. 14. P. 4297–4311. DOI: 10.5194/acp-14-4297-2014.
  6. Stengel M., Sus O., Stapelberg S., Schlundt C., Poul­sen C., Hollmann R. ESA cloud climate change initiative (ESA Cloud_cci). Data: Cloud_cci AVHRR-PM L3C/L3U CLD_PRODUCTS v2.0, Deutscher Wetterdienst (DWD). 2017. [Electronic resource] URL: https:// doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/ V002.
  7. Westwater E.R., Crewell S., Mätzler C. A Review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere // Radio Sci. Bull. 2004. N 310. P. 59–80. DOI: 10.23919/URSIRSB.2004. 7909438.
  8. Karlsson K. A 10 year cloud climatology over Scandinavia derived from NOAA advanced very high resolution radiometer imagery // Int. J. Climatol. 2003. V. 23. P. 1023–1044. DOI: 10.1002/joc.916.
  9. Kostsov V.S., Kniffka A., Ionov D.V. Cloud liquid water path in the sub-Arctic region of Europe as derived from ground-based and space-borne remote observations // Atmos. Meas. Tech. 2018. V. 11. P. 5439–5460. DOI: 10.5194/amt-11-5439-2018.
  10. Kostsov V.S., Kniffka A., Stengel M., Ionov D.V. Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe // Atmos. Meas. Tech. 2019. V. 12. P. 5927–5946. DOI: 10.5194/amt-12-5927-2019.
  11. Kostsov V.S., Ionov D.V., Kniffka A. Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study // Atmos. Meas. Tech. Discuss. 2020. DOI: 10.5194/amt-2020-52.
  12. Biryukov E.Yu., Kostsov V.S. Ispol'zovanie linejnyh regressionnyh sootnoshenij, poluchennyh na osnove model'nyh i eksperimental'nyh dannyh, dlya opredeleniya vodozapasa oblakov iz nazemnyh mikrovolnovyh izmerenij // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 386–394. DOI: 10.15372/AOO20190508; Biryukov E.Yu., Kostsov V.S. The use of linear regression relations derived from model and experimental data for retrieval of the water content of clouds from ground-based microwave measurements // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 569–577.
  13. Rose T., Crewell S., Löhnert U., Simmer C. A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere // Atmos. Res. 2005. V. 75, N 3. P. 183–200. DOI: 10.1016/j.atmosres.2004. 12.005.
  14. Radiometer Physics. A Rohde and Schwarz Company [Electronic resource]. URL: https://www.radiometer-physics.de (last access: 3.03.2020).
  15. The University of Manchester. Centre for Atmospheric Science. Clouds [Electronic resource]. URL: http:// www.cas.manchester.ac.uk/resactivties/cloudphysics/background/classification/ (last access: 3.03.2020).
  16. Rosenkranz P.W. Line-by-line microwave radiative trans­fer (non-scattering) // Remote Sens. 2017. DOI: 10. 21982/M81013.
  17. Maetzler C. Ground-based observations of atmospheric radiation at 5, 10, 21, 35, and 94 GHz // Radio Sci. 1992. V. 27. P. 403–415.
  18. FGBU «Severo-Zapadnoe upravlenie po gidrometeorologii i monitoringu okruzhayushchej sredy» [Elektronnyj resurs]. URL: http://www.meteo.nw.ru/articles/ index.php?id=746 (last access: 3.03.2020).