Vol. 33, issue 09, article # 1

Rodimova O. B. Absorption coefficient in the wing of 1–0 CO band broadened by He. // Optika Atmosfery i Okeana. 2020. V. 33. No. 09. P. 663–667. DOI: 10.15372/AOO20200901 [in Russian].
Copy the reference to clipboard
Abstract:

Absorption in the 1–0 CO band wing broadened by He at different temperatures is regarded within the asymptotic line wing theory. It presents absorption as a sum of the absorption coefficients of individual line with a special shape at far distances from the line center. The line shape parameters pertaining to quantum and classical interaction potentials are found as a result of fitting to the experimental absorption data in the 1–0 CO band wing and the temperature dependence of the second virial coefficient.

Keywords:

the fundamental CO band wing, the He broadening, spectral line wings, second virial coefficient

References:

1. Lorentz H.A. The absorption and emission lines of gaseous bodies // Proc. KNAW. 1905–1906. V. 8. II. P. 591–611.
2. Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4.3 m band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1964. V. 4, N 4. P. 527–537.
3. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. – IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Am. 1969. V. 59, N 3. P. 267–280.
4. Boissoles J., Boulet C., Hartmann J.M., Perrin M.Y., Robert D. Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the Ar-broadened wing of CO2 n3 band // J. Chem. Phys. 1990. V. 93, N 4. P.2217–2221.
5. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filippov N.N. Influence of line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 5. P. 521–543.
6. Niro F., Jucks K., Hartmann J.-M. Spectra calculations in central and wing regions of CO2 IR bands. IV.: software and database for the computation of atmospheric spectra // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 95. P. 469–481.
7. Elsasser W.M. Far infrared absorption of atmospheric water vapor // Astrophys. J. 1938. V. 87. P. 497–507.
8. Clough S.A., Kneizys F.X., Davies R.W. Line shape and the water vapor continuum // Atmos. Res. 1989. V. 23. P. 229–241.
9. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. DOI: 10.1016/j.jms.2016.04.011
10. Benedict W.S., Herman R., Moore G.E., Silverman S.J. Strengths, widths and shapes of lines in the vibration-rotation bands of CO // Astrophys. J. 1962. V. 135, N 1. P. 277–297.
11. Lowder J.F. Self-broadened half-width measurements in the CO fundamental // J. Quant. Spectrosc. Radiat. Transfer. 1971. V. 11, N 11. P. 1647–1657.
12. Dokuchaev A.B., Tonkov M.B. Forma vnutrennej chasti kolebatel'no-vrashchatel'noj polosy 1–0 СO // VI Vsesoyuz. simpoz. po molekulyarnoj spektroskopii vysokogo i sverhvysokogo razresheniya. Part 2. Tomsk: IOA SO RAN, 1982. P. 89–92.
13. Dokuchaev A.B., Tonkov M.B. Vliyanie temperatury na kontur kolebatel'no-vrashchatel'noj polosy 1–0 СO // VI Vsesoyuz. simpoz. po molekulyarnoj spektroskopii vysokogo i sverhvysokogo razresheniya. Part 2. Tomsk: IOA SO RAN, 1982. P. 93–96.
14. Tonkov M.V., Filippov N.N. Ispol'zovanie modeli sil'nyh stolknovenij v raschetah formy kolebatel'no-vrashchatel'nyh polos // VI Vsesoyuz. simpoz. po molekulyarnoj spektroskopii vysokogo i sverhvysokogo razresheniya. Part 2. Tomsk: IOA SO RAN, 1982. P. 97–100.
15. Tonkov M.V., Filippov N.N. Vliyanie vzaimodejstvij molekul na formu kolebatel'no-vrashchatel'nyh polos v spektrah gazov. 2. Svojstva spektral'noj funktsii // Optika i spektroskop. 1983. V. 54, is. 5. P. 801–806.
16. Dokuchaev A.B., Tonkov M.V. O nelorenttsovskom haraktere pogloshcheniya vnutri kolebatel'no-vrashchatel'noj polosy 1–0 okisi ugleroda // Optika i spektroskop. 1984. V. 56, is. 2. P. 247–254.
17. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filippov N.N. Influence of line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 5. P. 521–543.
18. Baranov Yu.I., Tonkov M.V. Forma kryl'ev IK-polos okisi i dvuokisi ugleroda // Optika i spektroskop. 1984. V. 57, is. 2. P. 242–247.
19. Tonkov M.V., Filippov N.N. Dinamika momenta sil pri binarnyh stolknoveniyah i forma kryl'ev IK-polos СО i СО2 // Himicheskaya fizika. 1991. V. 10, N 7. P. 922–929.
20. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Koeffitsient pogloshcheniya v mikrooknah i kryl'yah osnovnoj polosy SO // Izv. vuzov. Fizika. 1985. N 211-85. 38 p.
21. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'nyh linij v fundamental'noj polose CO // Optika atmosf. 1988. V. 1, N 4. P. 36–44.
22. Lavrent'eva N.N., Telegin G.V. Pogloshchenie v mikrooknah prozrachnosti osnovnoj polosy spektra CO // Trudy 7 Vsesoyuz. simpoz. po molekulyarnoj spektroskopii vysokogo i sverhvysokogo razresheniya. Part III. Tomsk: IOA SO RAN, 1986. P. 256–260.
23. Rodimova O.B. Koeffitsient pogloshcheniya v kryl'yah fundamental'noj polosy CO // Tez. Dokl. XXII Rabochej gruppy «Aerozoli Sibiri». Tomsk: IOA SO RAN, 2015. P. 36.
24. Chuaqui C.E., Le Roy R.J., McKellar A.R.W. Infrared spectrum and potential energy surface of He–CO // J. Chem. Phys. 1994. V. 101, N 1. P. 39–61.
25. Smith T.C., Hostutler D.A., Hager G.D., Heaven M.C., McBane G.C. State-to-state rotational rate constants for CO + He: Infrared double resonance measurements and simulation of the data using the SAPT theoretical potential energy surface // J. Chem. Phys. 2004. V. 120, N 5. P. 2285–2295.
26. Heijmen T.G.A., Moszynski R., Wormer P.E.S., Ad van der Avoird. A new He–CO interaction energy surface with vibrational coordinate dependence. I. Ab initio potential and infrared spectrum // J. Chem. Phys. 1997. V. 107, N 23. P. 9921–9928.
27. Peterson K.A., McBane G.C. A hierarchical family of three-dimensional potential energy surfaces for He–CO // J. Chem. Phys. 2005. V. 123, N 8. P. 084314-1–15.
28. Reid J.P., Simpson C.J.S.M., Quiney H.M. A new He–CO interaction energy surface with vibrational coordinate dependence. II. The vibrational deactivation of CO (v = 1) by inelastic collisions with 3He and 4He // J. Chem. Phys. 1997. V. 107, N 23. P. 9929–9934.
29. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
30. Girshfel'der Dzh., Kertiss Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostej. M.: Inostran. lit-ra, 1961. 930 p.
31. Moszynski R., Korona T., Wormer P.E.S., Ad van der Avoird. Ab initio potential energy surface, infrared spectrum, and second virial coefficient of the He–CO complex // J. Chem. Phys. 1995. V. 103, N 1. Р. 321–332.
32. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.