Vol. 33, issue 09, article # 5

Popovicheva O. B., Kobelev V. O., Sinitsky A. I., Sitnikov N. M., Chichaeva M. A., Hansen A. Urban emissions of black carbon in the Arctic region by observations near Salekhard city. // Optika Atmosfery i Okeana. 2020. V. 33. No. 09. P. 690–697. DOI: 10.15372/AOO20200905 [in Russian].
Copy the reference to clipboard

Urban emissions of black carbon (BC) were studied, since BC is the most significant component of the polluted atmosphere of the Arctic region. Three-months continuous measurements of BC mass concentrations were carried out in April–August 2019 at the aerosol station near the Salekhard city with an AE33 seven-wavelength aethalometer. Using a concentration probability function for BC concentrations measured under different wind speed and direction, potential sources of emissions have been identified. In the north-west direction from the station, the sector of urban emissions was detected, where the range of BC concentrations was from 73 to 135 ng/m3. According to official data, transport and thermal power plants, which use diesel fuel, gasoline, and natural gas, are the major Salekhard urban emission sources. In April–May and June 2019, the average BC concentrations in urban emissions were 133 ± 80 and 105 ± 80 ng/m3. In July, during a period of intense forest fires on the Polar Circle, they attained 350 ± 120 ng/m3 and identified the contribution of smoke plumes to the aerosol loading and deterioration of the urban air.


urban emissions, black carbon, Arctic region, wildfires


  1. Novakov T., Rosen H. The Black Carbon Story: Early History and New Perspectives // Ambio. 2013. V. 42. P. 840–851.
  2. Shindell D., Faluvegi G. Climate response to regional radiative forcing during the twentieth century // Nat. Geosci. 2009. V. 2. P. 294–300.
  3. Quinn P., Shaw G., Andrews E., Dutton E., Ruoho-Airola T., Gong S. Arctic haze: current trends and knowledge gaps // Tellus B. 2007. V. 59. P. 99–114.
  4. Pope III C.A., Dockery D.W. Health effects of fine particulate air pollution: lines that connect // J. Air Waste Manage. Assoc. 2006. V. 56. P. 709–742.
  5. Schmale J., Arnold S., Law K.S., Thorp T., Anenberg S., Simpson W., Mao J., Pratt K.A. Local Arctic air pollution: A neglected but serious problem // Earth’s Future. 2018. V. 6. P. 1385–1412.
  6. Steiner S., Czerwinski J., Comte P., Popovicheva O., Kireeva E., Müller L., Heeb N., Mayer A., Fink A., Rothen-Rutishauser B. Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells in vitro // Atmos. Environ. 2013. V. 81. P. 380–388.
  7. Evans M., Kholod N., Malyshev V., Tretyakova S., Gusev E., Yu S., Barinov A. Black carbon emissions from Russian diesel sources: case study of Murmansk // Atmos. Chem. Phys. 2015. V. 15. P. 8349–8359.
  8. Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V.P., Kopeikin V.M., Novigatsky A. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions // Atmos. Chem. Phys. 2013. V. 13. P. 8833–8855.
  9. Winiger P., Andersson A., Eckhard S.T., Stohl A., Semiletov I.P., Dudarev O.V., Charkin A., Shakhova N., Klimont Z., Heyes C., Gustafsson O. Siberian Arctic black carbon sources constrained by model and observation // Proc. Nat. Acad. Sci. 2017. V. 114. P. E1054–E1061.
  10. Popovicheva O., Diapouli E., Makshtas A., Shonija N., Manousakas M., Saraga D., Uttal T., Eleftheriadis K. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi // Sci. Total Environ. 2019. V. 655. P. 924–938.
  11. Koch D., Schulz M., Kinne S., McNaughton C., Spackman J., Balkanski Y., Bauer S., Berntsen T., Bond T.C., Boucher O., Chin M., Clarke A., De Lu­ca N., Dentener F., Diehl T., Dubovik O., Easter R., Fahey D.W., Feichter J., Fillmore D., Freitag S., Ghan S., Ginoux P., Gong S., Horowitz L., Iversen T., Kirkevag A., Klimont Z., Kondo Y., Krol M., Li X., Miller R., Montanaro V., Moteki N., Myhre G., Penner J.E., Perlwitz J., Pitari G., Reddy S., Sahu L., Sakamoto H., Schuster G., Schwarz J.P., Seland O., Stier P., Takegawa N., Takemura T., Textor C., van Aardenne J.A., Zhao Y. Evaluation of black carbon estimations in global aerosol models // Atmos. Chem. Phys. 2009. V. 9. P. 9001–9026.
  12. AMAP. The impact of black carbon on Arctic climate. Technical Report No. 4. AMAP, 2011. 74 р.
  13. EPA, Report to congress on black carbon, Department of the Interior, and Related Agencies, Edito, 2012. 20 р.
  14. Kozlov V.S., Panchenko M.V., Shmargunov V.P., Chernov D.G., Yausheva E.P., Pol’kin V.V., Terpugova S.А. Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian Subarctic // Himiya v interesah ustojchivogo razvitiya. 2016. V. 24. P. 423–440.
  15. Paris J.-D., Stohl A., Nédélec P., Arshinov M.Y., Panchenko M., Shmargunov V., Law K.S., Belan B.D., Ciais P. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements // Atmos. Chem. Phys. 2009. V. 9. P. 9315–9327.
  16. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Intern. J. Remote. Sens. 2014. V. 35. P. 5722–5741.
  17. Popovicheva O., Kistler M., Kireeva E., Persiantseva N., Timofeev M., Shoniya N., Kopejkin V.M. Sostav i mikrostruktura aerozolya zadymlennoj atmosfery g. Moskvy v usloviyah ekstremal'nyh pozharov august 2010 year // Izv. AH. Fizika atmosf. i okeana. 2017. V. 53. P. 56–65.
  18. Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., Sitnikov N., Eckhardt S., Eleftheriadis K. Black Carbon sources constrained by observations in the Russian High Arctic // Environ. Sci. Tech. 2017. V. 51. P. 3871–3879.
  19. Huang K., Fu J.S., Prikhodko V.Y., Storey J.M., Romanov A., Hodson E.L., Cresko J., Morozova I., Ignatieva Y., Cabaniss J. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation // J. Geophys. Res.: Atmos. 2015. V. 120. P. 11, 306–333.
  20. Vinogradova A.A., Vasil'eva A.V. Chernyj uglerod v vozduhe severnyh rajonov Rossii: istochniki, prostranstvennye i vremennye variatsii // Optika atmosf. i okeana. 2017. V. 30. P. 467–475; Vinogradova A.A., Vasileva A.V. Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 533–541.
  21. Kholod N., Evans M., Gusev E., Yu S., Malyshev V., Tretyakova S., Barinov A. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk // Sci. Total Environ. 2016. V. 547. P. 305–313.
  22. Drinovec L., Močnik G., Zotter P., Prévôt A., Ruckstuhl C., Coz E., Sciare T., Müller A., Wiedensohler A., Hansen A.D.A. The dual-spot Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation // Atmos. Meas. Tech. 2015. V. 8. P. 1965–1979.
  23. Sandradewi J., Prévôt A.S., Szidat S., Perron N., Alfarra M.R., Lanz V.A., Weingartner E., Baltensperger U. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter // Environ. Sci. Tech. 2008. V. 42. P. 3316–3323.
  24. Zhang K.M., Allen G., Yang B., Chen G., Gu J., Schwab J. Joint measurements of PM 2.5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments // Atmos. Chem. Phys. 2017. V. 17. P. 11441–11452.
  25. Allen G.A, Miller P.J., Rector L.J., Brauer M., Su J.G. Characterization of valley winter woodsmoke concentrations in Northern NY using highly time-resolved measurements // Aerosol Air Qual. Res. 2011. V. 11. P. 519–530.
  26. Raputa V.F., Popova S.A., Makarov V.I., Yaroslavtseva T.V. Opredelenie svyazej organicheskogo i elementnogo ugleroda po sektoram vynosa atmosfernyh primesej // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 878–882.
  27. Carslaw D.C., Beevers S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering // Environ. Model. Software. 2013. V. 40. P. 325–329.
  28. Uria-Tellaetxe I., Carslaw D. Conditional bivariate probability function for source identification // Environ. Model. Software. 2014. V. 59. P. 1–9.
  29. Stein A., Draxler R., Rolph G., Stunder B., Cohen M., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. N. 96. P. 2059–2077.
  30. Eleftheriadis K., Nyeki S., Psomiadou C., Colbeck I. Background aerosol properties in the European arctic // Water Air Soil Pollut. 2004. V. 4. P. 23–30.
  31. Yausheva E., Kozlov V., Panchenko M., Shmargunov V. Comparison of the year-to-year and seasonal variability of aerosol characteristics under urban and background conditions from measurements at the Aerosol Station and the Fonovaya Observatory in 2014–2018 // Proc. SPIE. 2019. V. 11208. P. 1120860.