Vol. 33, issue 12, article # 5

Sin’kevich A. A., Popov V. B., Abshaev A. M., Boe B. A., Pawar S. D., Mikhailovskii Yu. P., Toropova M. L., Gopalakrishnan V., Gekkieva Zh. M. Radar characteristics of Cu during their transition to thunderstorm in different regions of the world. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 932–936. DOI: 10.15372/AOO20201205 [in Russian].
Copy the reference to clipboard
Abstract:

Radar characteristics of convective clouds during their transition to thunderstorm stage are considered for three regions of the world (India, North Caucasus, and north-west of Russia). Cu depth increases in all regions; the reflectivity and cloud volumes with high reflectivity increase in Russia. Changes in reflectivity in clouds in India are low.

Keywords:

thunder, radar, cumulonimbus

References:

  1. Saunders C. Charge separation mechanisms in clouds // Space Sci Rev. 2008. V. 137. P. 335–353.
  2. Sin'kevich A.A. Dovgalyuk Yu.A. Koronnyj razryad v oblakah // Radiofizika. 2013. V. LVI, N 11–12. С. 1–12.
  3. Sin'kevich A.A., Kraus T.V. Effektivnost' vozdejstviya kristallizuyushchimi reagentami na konvektivnye oblaka s tsel'yu uvelicheniya osadkov // Radiolokatsionnaya meteorologiya i aktivnye vozdejstviya [sb. statej]. SPb: Glavnaya geofizicheskaya observatoriya, 2012. P. 30–49.
  4. Abshaev M.T., Burtsev I.I., Vaksenburg S.I., Shevela G.F. Rukovodstvo po primeneniyu radiolokatorov MRL-4, MRL-5 i MRL-6 v sisteme gradozashchity. L.: Gidrometeoizdat, 1980. 231 p.
  5. Sin'kevich A.A., Mihajlovskij Yu.P., Dovgalyuk Yu.A., Veremej N.E., Bogdanov E.V., Adzhiev A.H., Malkarova A.M., Abshaev A.M. Issledovaniya razvitiya grozo-gradovogo oblaka. Part 1. Razvitie oblaka i formirovanie elektricheskih razryadov // Meteorol. i gidrol. 2016. N 9. P. 27–40.
  6. Abshaev A.M. Abshaev M.T., Malkarova A.M., Barekova M.V. Rukovodstvo po organizatsii i provedeniyu protivogradovyh rabot. Nal'chik: Pechatnyj dvor, 2014. 500 p.
  7. Adzhiev A.H. Apparatura i metodika sinhronnoj registratsii mikrofizicheskih i elektricheskih harakteristik konvektivnyh oblakov // Pribory i tekhnika eksperimenta. 2015. N 5. P. 151–152.
  8. Wilcoxon F. Individual comparisons by ranking methods // Biometr. Bull. 1945. V. 1. Р. 80–83.
  9. Kraus T.V., Sin'kevich A.A., Veremej N.E., Dovgalyuk Yu.A., Stepanenko V.D. Issledovanie razvitiya sverhmoshchnogo kuchevo-dozhdevogo oblaka (provintsiya Andhra Pradesh, Indiya, 28 september 2004 year) // Meteorol. i gidrol. 2007. N 1. P. 30–42.
  10. Prabha T.V., Khain A., Maheshkumar R.S., Pandithurai G., Kulkarni J.R., Konwar M., Goswami B.N. Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX) // J. Atmos. Sci. 2011. V. 68. P. 1882–1901. DOI: 10.1175/2011JAS3707.1.
  11. Bera Sudarsan. Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing // J. Geophys. Res.: Atmos. 2016. V. 121. DOI: 10.1002/ 2016JD025133.
  12. Beard K.V. Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms // Atmos. Res. 1992. V. 28. P. 125—152.
  13. Manohar G., Kesarkar A. Climatology of thunderstorm activity over the Indian region: II. Spatial distribution. // Mausam. 2004. V. 55. P. 31–40.
  14. Patra S., Kalapureddy M. Cloud microphysical profile differences pertinent to monsoon phases: inferences from a cloud radar // Meteorol. Atmos. Phys. 2019. DOI: 10.1007/s00703-019-00666-9.