Vol. 37, issue 02, article # 12

Khutorova O. G., Maslova M. V., Khutorov V. E. Effects of strong convection in summer on atmospheric characteristics derived from GNSS monitoring data. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 163–168. DOI: 10.15372/AOO20240211 [in Russian].
Copy the reference to clipboard
Abstract:

The paper solves the problem of deriving the relationship between the variability of statistical characteristics of atmospheric parameters measured by GNSS receivers and the characteristics of convective processes according to the monitoring data near the Kazan city for 2013–2021. The results of GNSS monitoring are compared with the convective indices for the observation period. To assess convective processes, we used physical and statistical parameters of instability calculated from ERA5 reanalysis: Upward Vertical Velocity, Vortex Generation Parameter, and WMAXSHEAR. Statistical characteristics of the zenith tropospheric delay’s horizontal gradient significantly change under conditions of deep convection. The results of the work can be used to develop a methodology for sub-satellite monitoring of convective processes in the tasks of operational forecasting of severe weather phenomena.

Keywords:

global navigation satellite system, tropospheric monitoring, atmospheric convection, tropospheric zenith delay, gradient parameter

References:

1. Chernokul'skii A.V., Eliseev A.V., Kozlov F.A., Korshunova N.N., Kurganskii M.V., Mokhov I.I., Semenov V.A., Shvets' N.V., Shikhov A.N., Yarynich Yu.I. Opasnye atmosfernye yavleniya konvektivnogo kharaktera v Rossii: nablyudaemye izmeneniya po razlichnym dannym // Meteorol. i gidrol. 2022. N 5. P. 27–41.
2. Shikhov A.N., Chernokulsky A.V., Sprygin A.A., Yarinich Yu.I. Otsenka konvektivnoi neustoichivosti atmosfery v sluchayakh so shkvalami, smerchami i krupnym gradom po dannym sputnikovykh nablyudenii i reanaliza ERA5 // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 429–435; Shikhov A.N., Chernokulsky A.V., Sprygin A.A., Yarinich Yu.I. Estimation of convective atmospheric instability during squalls, tornadoes, and large hail events from satellite observations and ERA5 reanalysis data // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 793–801.
3. Semenov A.O., Virolainen Ya.A., Timofeyev Yu.M., Poberovskii A.V. Sravnenie nazemnykh IK-spektroskopicheskikh izmerenii obshchego soderzhaniya vodyanogo para s dannymi radiozondovykh izmerenii // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 976–980; Semenov A.O., Virolainen Ya.A., Timofeyev Yu.M., Poberovskii A.V. Comparison of ground-based FTIR and radio sounding measurements of water vapor total content // Atmos. Ocean. Opt. 2015. V. 28, N 2. P. 121–125.
4. Santerre R. GPS Satellite Sky Distribution: Impact on the Propagation of Some Important Errors in Precise Relative Positioning. Brunswick: UNB, 1989. 240 p.
5. Bevis M.S., Businger T.A. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System // J. Geophys. Res. 1992. V. 97, N D14. P. 15787–15801.
6. Bar-Sever Y.E., Kroger P.M., Borjesson J.A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver // JGR. 1998. V. 103, N B3. P. 5019–5035. DOI: 10.1029/97JB03534.
7. Elgered G, Ning T., Forkman P., Haas R. On the information content in linear horizontal delay gradients estimated from space geodesy observations // Atmos. Meas. Tech. 2019. V. 12. P. 3805–3823.
8. Li X., Zus F., Lu C., Ning T., Dick G., Ge M., Wickert J., Schuh H. Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations // Geophys. Res. Lett. 2015. V. 42. P. 4173–4181.
9. Barindelli S., Realini E., Venuti G., Fermi A., Gatti A. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers // Earth Planets Space. 2018. V. 70, N 1. P. 1–18.
10. Brenot H., Neméghaire J., Delobbe L., Clerbaux N., De Meutter P., Deckmyn A., Delcloo A., Frappez L., Van Roozendael M. Preliminary signs of the initiation of deep convection by GNSS // Atmos. Chem. Phys. 2013. V. 13. P. 5425–5449.
11. Nykiel G., Figurski M., Baldysz Z. Analysis of GNSS sensed precipitable water vapour and tropospheric gradients during the derecho event in Poland of 11th August 2017 // J. Atmos. Solar-Terr. Phys. 2019. V. 193. P. 105082.
12. Graffigna V., Hernández Pajares М., Azpilicueta F., Gende M. Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event // Remote Sens. 2022. V. 14, N 4. P. 888.
13. Kalinnikov V.V., Khutorova O.G. Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga–Ural region of Russia // Ann. Geophys. 2017. V. 35. P. 453–464. DOI: 10.5194/angeo-35-453-2017.
14. Khutorova O.G., Khutorov V.E., Dement'ev V.V., Blizorukov A.S., Korchagin G. E. Izmenchivost' polei atmosfernogo vlagosoderzhaniya po dannym zondirovaniya signalami GPS-GLONASS v okrestnostyakh g. Kazani // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15, N 3. P. 252–260.
15. Camisaya M.F., Rivera J.A., Mateo M.L., Morihetti P.V., Mackern M.V. Estimation of integrated water vapor derived from Global Navigation Satellite System observations over Central-Western Argentina (2015–2018). Validation and usefulness for the understanding of regional precipitation events // J. Atmos. Solar-Terr. Phys. 2020. V. 197. P. 1–12.
16. Khutorova O.G., Maslova M.V., Khutorov V.E. O monitoringe konvektivnykh protsessov s pomoshch'yu priemnikov sputnikovykh navigatsionnykh sistem // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 505–509.
17. Ziarani M.R., Bookhagen B., Schmidt T., Wickert J., De la Torre A., Deng Z., Calori A.A. Model for the Relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the Eastern Central Andes // Remote Sens. 2021. V. 13, N 18. P. 1–19.
18. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis //  Q.J.R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049.
19. Blanchard D.O. Assessing the vertical distribution of convective available potential energy // Weather Forecast. 1998. V. 13, N 3. P. 870–877.
20. Brooks H.B., Doswell C.A., Wilhelmson R.B. The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones // Mon. Weather Rev. 1994. V. 122. P. 126–136.
21. Burgess D.W., Lemon L.R. Severe thunderstorm detection by radar // Radar Meteorol. Am. Meteorol. Soc. 1990. P. 619–647.
22. Miller R.C. Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Center. Tech. Report N 200. Illinois: Scott AFB, 1972. 190 p.
23. Rasmussen E.N., Blanchard D.O. A baseline climatology of sounding-derived supercell and tornado forecast parameters // Weather Forecast. 1998. V. 13, N 13. P. 1148–1164.
24. Gracier J. Convection parameters. 2012 [Electronic resours] URL: http://www.juergen-griser.de/Convection Parameters/ConvectionParameters.pdf (last access: 20.06.2023).
25. Taszarek M., Brooks H.E., Czernecki B. Sounding-derived parameters associated with convective hazards in Europe // Mon. Weather Rev. 2017. V. 145, N 4. P. 1511–1528.
26. Jelić D., Prtenjak M.T., Malečić B., Vozila A.B., Megyeri O.A., Renko T. A new approach for the analysis of deep convective events: Thunderstorm intensity index // Atmosphere. 2021. V. 12, N 7. P. 908–934.
27. Gubenko I.M., Rubinshtein K.G. Testirovanie kompleksnogo metoda prognoza molnievoi aktivnosti // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 949–957.
28. ECMWF. IFS Documentation CY47R3 – Part IV: Physical Processes. URL: https://www.ecmwf.int/en/elibrary/81271-ifs-documentation-cy47r3-part-iv-physical-processes (last access: 20.06.2023).
29. Khutorova O.G., Maslova M.V., Khutorov V.E. Proyavlenie konvektivnykh protsessov v ryadakh integral'nogo vlagosoderzhaniya atmosfery po mnogoletnim dannym monitoringa troposfery signalami sputnikovykh navigatsionnykh sistem v g.  Kazani // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2023. V. 20, N 3. P. 271–281.
30. Guerova G., Douša J., Dimitrova T., Stoycheva A., Václavovic P., Penov N. GNSS storm nowcasting demonstrator for Bulgaria // Remote Sens. 2022. V. 14, N 15. P. 3746. DOI: 10.3390/rs14153746.