Vol. 37, issue 04, article # 3

Razhev A. M., Churkin D. S., Tkachenko R. A., Trunov I. A. UV nitrogen laser pumped by a pulsed longitudinal inductive-electric discharge. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 283–286. DOI: 10.15372/AOO20240403 [in Russian].
Copy the reference to clipboard
Abstract:

Electric discharge nitrogen lasers remain popular sources of UV radiation and find many scientific and practical applications. Currently, some of the requirements for commercial nitrogen lasers are small overall dimensions, high pulse-to-pulse stability, and extended service life. In this paper, a nitrogen laser excited by a pulsed longitudinal inductive-electric discharge is suggested as a source which satisfies such criteria. As a result of the experimental studies, lasing at wavelengths λ1 = 337.1 and λ2 = 357.7 nm was obtained. The generation energy reached 0.67 mJ with a pulse duration of 20 ns (FWHM) and a nitrogen pressure of 7...8 Torr. Pumping nitrogen only with a longitudinal discharge in an experimental setup with similar parameters led to a decrease in the lasing energy to 0.4 mJ (with the same pulse duration of 20 ns) at a nitrogen pressure of no higher than 5 Torr. Nitrogen lasers with these radiation parameters can be used to treat ophthalmic diseases and tuberculosis.

Keywords:

UV nitrogen laser, pulsed inductive discharge, longitudinal electric discharge, lasing energy

Figures:
References:

1. Kartashov D.V., Alisauskas S. Pugžlys A., Shneider M.N. Theory of a filament initiated nitrogen laser // J. Phys. B. 2015. V. 48, N 9. P. 1–15.
2. Ahmed R., Umar Z.A., Aslam Baig M. Emission intensity enhancement by re-ionization of Nd:YAG laser-produces plasma using a nitrogen laser // Laser Phys. 2019. V. 29, N 5. P. 1–5.
3. Uno K., Jitsuno T. Note: Simple 100 Hz N2 laser with longitudinal discharge tube and high-voltage power supply using neon sign transformer // Rev. Sci. Instrum. 2017. V. 88, N 126110. P. 1–2.
4. Murray K.K. Lasers for matrix-assisted laser desorption ionization // J. Mass. Spectrom. 2021. V. 56, N 6. P. 1–33.
5. Bhagwanani N.S., Bhatia C.C., Sharma N., Hemvani N., Chitnis D.S. Low level nitrogen laser therapy in pulmonary tuberculosis // Laser Ther. 2015. V. 24, N 3. P. 209–214.
6. Hemvani N., Chitnis D.S., Bhagwanani N.S. Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes // Photomed. Laser Surg. 2005. V. 23, N 6. P. 571–574.
7. Razhev A.M., Churkin D.S. Induktsionnyj ul'trafioletovyj azotnyj lazer // Pis'ma v ZhETF. 2007. V. 86, N 6. P. 479–483.
8. Razhev A.M., Churkin D.S., Tkachenko R.A. Kompaktnyj UF-azotnyj lazer s nakachkoj impul'snym induktsionnym razryadom // Optika atmosf. i okeana. 2018. V. 31, N 3. P. 182–185; Razhev A.M., Churkin D.S., Tkachenko R.A. Compact UV nitrogen laser pumped by a pulsed longitudinal inductive discharge // Atmos. Ocean. Opt. 2018. V. 31, N 4. P. 414–418.
9. Razhev A.M., Churkin D.S., Tkachenko R.A. MW peak-power UV inductive nitrogen laser // Appl. Phys. B. 2020. V. 126, N 104. P. 1–6.
10. Piejak R.B., Godyak V.A., Alexandrovich B.M. A simple analysis of an inductive RF discharge // Plasma Sources Sci. Technol. 1992. V. 1, N 3. P. 179–186.
11. Razhev A.M., Churkin D.S., Tkachenko R.A. Azotnyj lazer s nakachkoj impul'snym prodol'nym elektricheskim i induktsionnym razryadami // Pis'ma v ZhETF. 2023. V. 49, N 20. P. 8–10.