Vol. 37, issue 04, article # 5

Tarasenko V. F., Vinogradov N. P., Baksht E. H., Sorokin D. A., Pechenitsin D. S . Bright areas of radiation in low-pressure air when diffuse plasma jets meet. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 294–301. DOI: 10.15372/AOO20240405 [in Russian].
Copy the reference to clipboard
Abstract:

The glow of diffuse plasma jets (DPJ) is studied, which make it possible to simulate in low-pressure atmospheric air some properties of red sprites – pulsed discharges observed in the upper layers of the Earth's atmosphere at altitudes of 40–100 km. DPJs were initiated by the plasma of a pulse-periodic capacitive discharge created in a quartz tube between two external electrodes and propagated simultaneously in opposite directions. To form the DPJs, which moved towards each other, two pairs of ring electrodes were used, installed at a distance of 66 cm. When unipolar voltage pulses from generators were applied to each pair of ring electrodes with a delay of hundreds of nanoseconds, bright areas of luminescence (BAL) similar to those observed in the lower area of the column sprites appeared. It has been established that at a generator voltage of 7 kV, the optimal air pressure for the appearance of BAL is 1–2 Torr. It is shown that BALs arise due to the interaction of streamers that make up the DPJs. The speed of propagation of the DPJ front was measured for the positive polarity of voltage pulses applied to the ring electrodes. Photographs and emission spectra of the DPJs, as well as bright regions in the DPJs, were obtained. Using the SPECAIR program, plasma parameters were calculated in different areas of diffuse plasma jets. It has been established that in the region where BALs appear, the average value of the electron temperature decreases.

Keywords:

diffuse plasma jet, discharge in low-pressure air, interaction between streamers, bright area of luminescence, emission spectrum

Figures:
References:

1. Xu C., Qie X., Sun Z., Yang J., Zhang H., Chen A.B.C. Transient luminous events and their relationship to lightning strokes over the Tibetan Plateau and its comparison regions // J. Geophys. Res.: Atmos. 2023. V. 128. P. e2022JD037292. DOI: 10.1029/2022JD037292.
2. Kuo C.-L., Huang T.-Y., Hsu C.-M., Sato M., Lee L.-C., Lin N.-H. Resolving elve, halo and sprite halo images at 10,000 Fps in the Taiwan 2020 campaign // Atmosphere. 2021. V. 12, N 8. P. 1000. DOI: 10.3390/atmos12081000.
3. Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. Observations of red sprites above Hurricane Matthew // Geophys. Res. Lett. 2018. V. 45. P. 13. DOI: 10.1029/2018GL079576.
4. Pasko V.P., Yair Y., Kuo C.L. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects // Space Sci. Rev. 2012. V. 168, N 1. P. 475–516. DOI: 10.1007/s11214-011-9813-9.
5. Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., Hensley B.A., Kanmae T. Sprite initiation altitude measured by triangulation // J. Geophys. Res.: Space Phys. 2010. V. 115, N A8. P. A00E12. DOI: 10.1029/2009JA014850.
6. Jehl A., Farges T., Blanc E. Color pictures of sprites from non-dedicated observation on board the International Space Station // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 454–461. DOI: 10.1029/2012JA018144.
7. Pasko V.P., Qin J., Celestin S. Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry // Surv. Geophys. 2013. V. 34, N 6. P. 797–830. DOI: 10.1007/s10712-013-9246-y.
8. Qin J., Celestin S., Pasko V.P., Cummer S.A., McHarg M.G., Stenbaek-Nielsen H.C. Mechanism of column and carrot sprites derived from optical and radio observations // Geophys. Res. Lett. 2013. V. 40, N 17. P. 4777–4782. DOI: 10.1002/grl.50910.
9. Kanmae T., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R.K. Diameter-speed relation of sprite streamers // J. Phys. D: Appl. Phys. 2012. V. 45, N 27. P. 275203. DOI: 10.1088/0022-3727/45/27/275203.
10. Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., McHarg M.G., Ebert U., Luque A. On the emergence mechanism of carrot sprites // Geophys. Res. Lett. 2020. V. 47. P. e2019GL085776. DOI: 10.1029/2019GL085776.
11. Singh M., Sharma P.K., Pathak P.P. Radiation phenomenon due to streamers of sprites // J. Electromag. Anal. Appl. 2022. V. 14, N 3. P. 31–37. DOI: 10.4236/jemaa.2022.143003.
12. Tarasenko V., Vinogradov N., Baksht E., Sorokin D. Ionization waves, propagating in opposite directions, as in red sprites // J. Atmos. Sci. Res. 2022. V. 5, N 4. P. 26–36. DOI: 10.24018/ejgeo.2022.3.6.322.
13. Baksht E.Kh., Vinogradov N.P., Tarasenko V.F. Formirovanie strimerov v neodnorodnom elektricheskom pole pri nizkikh davleniyakh vozdukha // Optika atmosf. i okeana. 2022. V. 35. N 9. P. 777–781; Baksht E.K., Vinogradov N.P., Tarasenko V.F. Generation of streamers in an inhomogeneous electric field under low air pressure // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S159–S164. DOI: 10.1134/S1024856023010025.
14. Tarasenko V.F., Baksht E.Kh., Panarin V.A., Vinogradov N.P. Strimery, initsiiruemye emkostnym razryadom pri davleniyakh vozdukha 0,2–6 torr // Fizika plazmy. 2023. V. 49, N 6. P. 590–599. DOI: 10.31857/S0367292123700245, EDN: WYLTGE.
15. Sorokin D.A., Tarasenko V.F., Baksht E.K., Vinogradov N.P. Analogs of columnar sprites initiated in low-pressure air and nitrogen // Phys. Plasmas. 2023. V. 30. P. 083515. DOI: 10.1063/5.0153509.
16. Luque A., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R.K. Sprite beads and glows arising from the attachment instability in streamer channels // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 2431–2449. DOI: 10.1002/2015JA022234.
17. Stenbaek-Nielsen H.C., McHarg M.G., Haaland R., Luque A. Optical spectra of small-scale sprite features observed at 10.000 fps // J. Geophys. Res.: Atmos. 2020. V. 125. P. e2020JD033170. DOI: 10.1029/2020JD033170.
18. Robledo-Martinez A., Garcia-Villarreal A., Sobral H. Comparison between low-pressure laboratory discharges and atmospheric sprites // J. Geophys. Res.: Space Phys. 2017. V. 122. P. 948–962. DOI: 10.1002/2016JA023519.
19. Goto Y., Ohba Y., Narita K. Optical and spectral characteristics of low pressure air discharges as sprite models // J. Atmos. Electr. 2007. V. 27, N 2. P. 105–112. DOI: 10.1541/jae.27.105.
20. Sosnin E.A., Babaeva N.YU., Kozhevnikov V.Yu., Kozyrev A.V., Naidis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modelirovanie tranzientnykh svetovykh yavlenii srednei atmosfery Zemli c pomoshch'yu apokampicheskogo razryada // Uspekhi fiz. nauk. 2021. V. 191, N 2. P. 199–219. DOI: 10.3367/UFNr.2020.03.038735.
21. Kanmae T., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R.K. Observation of blue sprite spectra at 10,000 fps // Geophys. Res. Lett. 2010. V. 37. P. L13808. DOI: 10.1029/2010GL043739.
22. Shishpanov A.I., Ivanov D.O., Kalinin S.A. Collision of ionization waves in long discharge tubes // Plasma Res. Express. 2019. V. 1. P. 025004. DOI: 10.1088/2516-1067/ab1b8d.
23. Britun N., Gaillard M., Ricard A., Kim Y.M., Kim K.S., Han J.G. Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 RF discharge // J. Phys. D: Appl. Phys. 2007. V. 40. P. 1022–1029. DOI: 10.1088/0022-3727/40/4/016.
24. Paris P., Aints M., Valk F., Plank T., Haljaste A., Kozlov K.V., Wagner H.-E. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas // J. Phys. D: Appl. Phys. 2005. V. 38. P. 3894–3899. DOI: 10.1088/0022-3727/38/ 21/010.
25. Laux C.O. Radiation and Nonequilibrium Collisional-Radiative Models, Physico-Chemical of High Enthalpy and Plasma Flows. Belgium: von Karman Institute Lecture, 2002.
26. Starikovskaia S.M., Anikin N.B., Pancheshnyi S.V., Starikovskii A.Yu. Time-resolved emission spectroscopy and its applications to the study of pulsed nanosecond high-voltage discharges // Proc. SPIE. V. 2002. N 4460. P. 63–72. DOI:10.1117/12.459416.