Vol. 37, issue 06, article # 3

Gorchakov G. I., Karpov A. V., Gushchin R. A., Dazenko O. I. Electrical processes in a wind-sand flux on desertified areas. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 461–467. DOI: 10.15372/AOO20240603 [in Russian].
Copy the reference to clipboard
Abstract:

Electrical processes in a wind-sand flux has been studied. According to synchronous measurements in a deserted area in the Astrakhan region, the density of saltation electric currents and currents caused by the transfer of charged dust aerosol particles at heights of 4 and 12 cm are received. The statistical characteristics of variations in the density and density moduli of these currents are calculated. It is shown that in a wind-sand flux in the height range from 4 to 12 cm, the density modules of saltation electric currents and currents caused by the transfer of dust aerosol decrease with height much more slowly (logarithmic gradients are -0.025 and -0.07 cm-1) than the concentration of saltating particles (logarithmic gradient is -0.32 cm-1). It is confirmed that the moduli of saltation electric current density correlate with each other and with wind speed in the surface air layer more closely than the current densities themselves. It is of great interest to study the influence of electrical processes in wind-sand flux on the dynamics of saltation.

Keywords:

wind-sand flux, dust aerosol, electrification of wind-sand flux, saltation current, aerosol charge transport, electric current density, current density module, logarithmic gradient

References:

1. Mahowald N., Albani S., Kok J.F., Engelstaeder S., Scanza R., Ward D.S., Flanner M.G. The size distribution of desert dust aerosols and its impact on the Earth system // Aeolian Res. 2014. V. 15. P. 53–71. DOI: 10.1016/j.aeolia.2013.09.002.
2. Bagnold R.A. The Physics of Blown Sand and Desert Dunes. London: Methuen, 1941. 265 р.
3. Byutner E.K. Dinamika pripoverhnostnogo sloya vozduha L.: Gidrometeoizdat, 1978. 158 p.
4. Shao Y. Physics and Modeling of Wind Erosion. New York: Springer, 2000. 393 р.
5. Kok J.F., Parteli E.J.R., Michaels T.I., Karam D.B. The physics of wind-blown sand and dust // Rep. Prog. Phys. 2012. V. 75, N 10. P. 106901. DOI: 10.1088/0034-4885/75/10/106901.
6. Semenov O.E. Vvedenie v eksperimental'nuyu meteorologiyu i klimatologiyu peschanyh bur'. Almaty: KazNIIEK, 2011. 580 p.
7. Harrison R.G., Barth E., Esposito F., Merrison J., Montmessin F., Aplin K.L., Borlina C., Berthelier J.J., Déprez G., Farrell W.M., Houghton I.M. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity // Space Sci. Rev. 2016. V. 203. P. 299–345. DOI: 10.1007/978-94-024-1134-8_10.
8. Alfaro S.C., Gaudichet A., Gomes L., Maille M. Modeling the size distribution of a soil aerosol produced by sandblasting // J. Geophys. Res. 1997. V. 102, N D10. P. 11239–11249. DOI: 10.1029/97jd00403.
9. Shao Y., Raupach M.R., Findlater D.A. Effect of saltation bombardment on the entertainment of dust by wind // J. Geophys. Res. 1993. V. D98, N D7. P. 12719–12726. DOI: 10.1029/93JD00396.
10. Rasmussen K.R., Kok J.F., Merrison J.P. Enhancement in wind-driven sand transport by electric fields // Planet. Space Sci. 2009. V. 57, N 7. P. 804–808. DOI: 10.1016/j.pss.2009.03.001.
11. Bo T.L., Zhang H., Zheng X.J. Charge-to-mass ratio of saltating particles in wind-blown sand // Sci. Rep. 2014. V. 4, N 1. P. 5590. DOI: 10.1038/srep05590.
12. Esposito F., Molinaro R., Popa C.I., Molfese C., Cozzolino F., Marty L., Taj-Eddine K., Di Achille G., Franzese G., Silvestro S., Ori G.G. The role of the atmospheric electric field in the dust-lifting process // Geophys. Res. Lett. 2016. V. 43, N 10. P. 5501–5508. DOI: 10.1002/2016GL068463.
13. Zhang H., Zheng X. Quantifying the large-scale electrification equilibrium effects in dust storms using field observations at Qingtu Lake Observatory // Atmos. Chem. Phys. 2018. V. 18, N 23. P. 17087–17097. DOI: 10.5194/acp-18-17087-2018.
14. Zhang H., Zhou Y.H. Effects of 3D electric field on saltation during dust storms: An observational and numerical study // Atmos. Chem. Phys. 2020. V. 20, N 23. P. 14801–14820. DOI: 10.5194/acp-20-14801-2020.
15. Onyeagusi F.C., Meyer C., Teiser J., Becker T., Wurm G. Charged atmospheric aerosols from charged saltating dust aggregates // Atmosphere. 2023. V. 14, N 7. P. 1065. DOI: 10.3390/atmos14071065.
16. Bo T.L., Li F. Multi-scale characteristics of the spatial distribution of space charge density that determines the vertical electric field during dust storms // Granul. Matter. 2023. V. 25, N. 1. P. 6. DOI: 10.1007/s10035-022-01293-9.
17. Schmidt D.S., Schmidt R.A., Dent Y.D. Electrostatic force on saltating sand // J. Geophys. Res. 1998. V. 103, N D8. P. 8997–9001. DOI: 10.1029/98JD00278.
18. Bo T.L., Zheng X.J. A field observational study of electrification within a dust storm in Minqin, China // Aeolian Res. 2013. V. 8. P. 39–47. DOI: 10.1016/j.aeolia.2012.11.001.
19. Sinclair P.C. General characteristics of dust devils // J. Appl. Meteorol. Climatol. 1969. V. 8, N 1. P. 32–45. DOI: 10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2.
20. Gorchakov G.I., Kopeikin V.M., Karpov A.V., Gushchin R.A., Datsenko O.I., Buntov D.V. Elektrizatsiya vetropeschanogo potoka na opustynennykh territoriyakh // Dokl. RAN. Nauki o Zemle. 2022. V. 505, N 1. P. 89–94. DOI: 10.31857/S2686739722070076.
21. Gorchakov G.I., Kopeikin V.M., Karpov A.V., Gushchin R.A., Datsenko O.I., Buntov D.V. Pylevaya plazma vetropeschanogo potoka na opustynennykh territoriyakh // Izv. RAN. Fiz. atmosf. i okeana. 2022. V. 58, N 5. P. 543–553.
22. Smirnov N.V., Dunin-Borkovskii I.V. Kratkii kurs matematicheskoi statistiki dlya tehnicheskoi prilozhenii. M.: Fizmatgiz, 1959. 436 p.
23. Stout J.E., Zobeck T.M. Intermittent saltation // Sedimentology. 1997. V. 44, N 5. P. 959–970. DOI: 10.1046/j.1365-3091.1997.d01-55.x.
24. Gorchakov G.I., Karpov A.V., Gushchin R.A., Datsenko O.I., Buntov D.V. Vertikal'noe raspredelenie alevritovyh i peschanyh chastits v vetropeschanom potoke nad opustynennoi territoriei // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 5. P. 555–564.
25. Anisimov S.V., Mareev E.A., Shihova N.M., Dmitriev E.M. Mehanizmy formirovaniya pul'satsii elektricheskogo polya prizemnoi atmosfery // Izv. vuzov. Radiofizika. 2001. V. 44, N 7. P. 8–18.
26. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskii P.M., Samohvalov I.V. Elektroopticheskie yavleniya v atmosfere. Tomsk: NTL, 2015. 314 p.
27. Malinovskaya E.A., Chhetiani O.G., Panchishkina I.N., Petrova G.G., Petrov A.N. O svyazi prizemnogo elektricheskogo polya i aridnogo aerozolya pri razlichnyh vetrovyh usloviyah // Dokl. RAN. Nauki o zemle. 2022. V. 502, N 2. P. 69–78. DOI: 10.31857/S2686739722020104.
28. Karpov A.V., Gorchakov G.I., Gushchin R.A., Datsenko O.I. Vertikal'nye turbulentnye potoki pylevogo aerozolya // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 5. P. 565–574.
29. Gorchakov G.I., Karpov A.V., Kopeikin V.M., Buntov D.V., Gushchin R.A., Datsenko O.I. Dust aerosol emission on the desertified area // Proc. SPIE, 2020. V. 11560. P. 1552–1558. DOI: 10.1117/12.2575880.