The absorption spectrum of the 14N17O molecule in the range 5200–5550 cm-1 was recorded for the first time using a Bruker IFS-125M Fourier spectrometer with a spectral resolution of 0.0056 cm-1. An analysis of the spectrum made it possible to detect 83 vibrational-rotational lines of the 3–0 band of the main transitions in the X2Π electronic state of the 14N17O molecule. For 29 resolved doublets, the positions and relative intensities of each component of a doublet are determined. The spectroscopic Λ-parameters are found. For the remaining 25 unresolved doublets, the positions and relative intensities of the doublet center are also determined. The maximum of the rotational quantum number J was 24.5. The found experimental line positions in the 3–0 band confirmed the calculated data given in the ExoMol database. The frequencies of registered transitions weighted in accordance with experimental uncertainties have been processed, and the spectroscopic constants for the vibrational state v = 3 have been determined. With the found spectroscopic constants, predictive calculations were made of the rotational energy term values up to J = 30.5 in the vibrational state v = 3 and, accordingly, the transition frequencies of the 3–0 vibrational band for 2Π1/2 and 2Π3/2 electronic states. The calculations performed showed agreement with the data given in the ExoMol database, within the error specified.
14N17O isotopologue, experimental spectrum, vibration band 3–0, transition frequency, relative intensity, spectroscopic constant
1. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured line positions of 14N16O in X2Π state // J. Quant. Specrosc. Radiat. Transfer. 2018. V. 209. P. 171–179. DOI: 10.1016/j.jqsrt.2018.01.020.
2. Sulakshina O.N., Borkov Yu.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of 14N16O // Mol. Phys. 2018. V. 116. P. 3519–3529. DOI: 10.1080/00268976.2018.1468043.
3. Borkov Yu.G., Sulakshina O.N., Serdyukov V.I., Sinitsa L.N. Parametry spektral'nykh linii kolebatel'noi polosy 3–0 dlya molekuly 15N16O v osnovnom elektronnom sostoyanii // Optika atmosf. i okeana. 2023. V. 36, N 4. P. 251–256. DOI: 10.15372/AOO20230401; Borkov Yu.G., Sulakshina O.N., Serdyukov V.I., Sinitsa L.N. Spectroscopic parameters of the (3–0) vibrational band for the 15N16O molecule in the ground electronic state // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 427–432.
4. Borkov Yu.G., Sulakshina O.N., Serdyukov V.I., Sinitsa L.N. Analiz spektra izotopologa 14N18O v oblasti 5200–5500 cm-1 // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 799–806. DOI: 10.15372/AOO20231002; Borkov Yu.G., Sulakshina O.N., Serdyukov V.I., Sinitsa L.N. Analysis of 14N18O spectrum in the 5200–5500 сm-1 spectral region vapors // Atmos. Ocean. Opt. 2023. V. 36, N S1. P. S17–S26.
5. Isidorov V.A. Organicheskaya khimiya atmosfery. SPb.: Himizdat, 2001. 352 p.
6. Belan B.D. Ozon v troposfere. Tomsk: IOA SO RAN, 2010. 488 p.
7. Roller C., Namjou K., Jeffers J.D., Camp M., Mock A., McCann P.J., Grego J. Nitric oxide breath testing by tunable diode laser absorption spectroscopy: Application in monitoring respiratory inflammation // Appl. Opt. 2002. V. 41. P. 6018. DOI: 10.1364/AO.41.006018.
8. Gerard J.C. Satellite observations of the nitric oxide nightglow // Geophys. Res. Lett. 1975. V. 2. P. 179–182.
9. Bertaux J.-L., Leblanc F., Perrier S., Quemerais E., Korablev O., Dimarellis E., Reberac A., Forget F., Simon P.C., Stern S.A., Sandel B., the SPICAM team. Nightglow in the upper atmosphere of Mars and implications for atmospheric transport // Science. 2005. V. 307. P. 566–569. DOI: 10.1126/science.1106957.
10. Munoz A.G., Mills F.P., Piccioni G., Drossart P. From the cover: The near-infrared nitric oxide nightglow in the upper atmosphere of Venus // Proc. Natl. Acad. Sci. 2009. V. 106. P. 985–988. DOI: 10.1073/pnas.0808091106.
11. Millar T.J., Farquhar P.R.A., Willacy K. The UMIST database for astrochemistry 1995 // Astron. Astrophys. Suppl. Ser. 1997. V. 121. P. 139–185.
12. Muller H.S.P., Kobayashi K., Takahashi K., Tomaru K., Matsushima F. Terahertz spectroscopy of N18O and isotopic invariant fit of several nitric oxide isotopologs // J. Mol. Spectros. 2015. V. 310. P. 92–98. DOI: 10.1016/S1369-7021(08)70016-6.
13. Wong A., Yurchenko S.N., Bernath P., Holder S., Muller P., McConkey S., Tennyson J. ExoMol line list-XXI. Nitric oxide (NO) // Mon. Not. R. Astron. Soc. 2017. V. 470. P. 882–897. DOI: 10.1093/mnras/staa2034.
14. Hargreaves R.J., Gordon I.E., Rothman L.S., Tashkun S.A., Perevalov V.I., Lukashevskaya A.A., Yurchenko S.N., Tennyson J., Müller H.S.P. Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database // J. Quant. Specrosc. Radiat. Transfer. 2019. V. 232. P. 35–53. DOI: 10.1016/j.jqsrt.2019.04.040.
15. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Reed Z.D., Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W, Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J, Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quantum. Specrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
16. Dale R.M., Johns J.W.C., McKellar A.R.W., Riggin M. High-resolution laser magnetic resonance and infrared-radiofrequency double-resonance spectroscopy of NO and its isotopes near 5.4 mm // J. Mol. Spectrosc. 1977. V. 67. P. 440–458.
17. Amiot C., Basis R., Guelachvili G. Infrared study of the X2Π v = 0, 1, 2 levels of 14N16O. Preliminary results on the v = 0, 1 levels of 14N17O, 14N18O, and 15N16O // Can. J. Phys. 1978. V. 56. P. 251–265. DOI: 10.1139/p78-032.
18. Salek A.H., Liedtke M., Dolgner A., Winnewisser G. Rotational spectra of 14N17O and 15N18O // Z. Naturforsch. 1994. V. 49. P. 1111–1118. DOI: 10.1515/zna-1994-1203.
19. Lyulin O.M. Opredelenie parametrov spektral'nykh linii iz neskol'kikh spektrov pogloshcheniya s pomoshch'yu programmy MultiSpectrum Fitting // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 408–416. DOI: 10.15372/AOO20150504; Lyulin O.M. Determination of spectral line parameters from several absorption spectra with the MultiSpectrum Fitting computer code // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 487–495.
20. Brown J.M., Colbourn E.A., Watson J.K.G., Wayne F.D. En effective Hamiltonian for diatomic molecules. Ab initio calculations of parameters of HCl+ // J. Mol. Spectrosc. 1979. V. 74. P. 294–318.
21. Salek A.H., Yamada K.M.T., Winnewisser G. Isotopic nitric oxide spectra and breakdown of the Born–Oppenheimer approximation // Mol. Phys. 1991. V. 72. P. 1135–1148. DOI: 10.1080/00268979100100811.