The laser fragmentation/laser-induced fluorescence (LF/LIF) method is well known for its efficiency in detecting complex chemical compounds based on the fluorescence of their characteristic fragments. The method is applied, for example, to measuring the local content of nitrous acid and hydroxyl radicals in the atmosphere, visualization of intermediate stages of combustion processes, remote detection of substances in the gaseous state in the atmosphere and condensed state on surfaces, etc. We present for the first time the results of the experimental study of a possibility of remote excitation of LIF of characteristic photofragments of a substance in an aerosol state in the atmosphere. The organophosphorus compound triethyl phosphate (TEP) was used as the test substance. It has been shown that synchronized two-pulse laser irradiation of TEP aerosol particles and their PO-fragments (phosphorus oxide molecules) makes it possible to increase the efficiency of the LF/LIF process by approximately seven times compared to single-pulse laser exposure. It has been established that the process of formation of PO-fragments of TEP aerosol under the laser irradiation at a wavelength of 266 nm has a decaying exponential character with a characteristic time of 192.6 ± 20.2 ns. In terms of the nature of the time dependence of the formation of photofragments, the results obtained are fundamentally different from similar measurements for other compounds in gaseous and condensed states and motivate further research that will contribute to the development of the LF/LIF method.
organophosphates, aerosol, laser fragmentation, phosphorus oxide, PO-fragments, laser-induced fluorescence
1. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003. DOI: 10.1364/AO.35.003998.
2. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0–3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64. DOI: 10.1366/0003702991945227.
3. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710. DOI: 10.1364/AO.38.004705.
4. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681. DOI: 10.1364/AO.40.006677.
5. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406. DOI: 10.1364/OE.18.005399.
6. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677. DOI: 10.1364/OE.19.018671.
7. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225. DOI: 10.1007/s11182-016-0635-9.
8. Puchikin A.V., Panchenko Yu.N., Yampolskaya S.A., Andreev M.V., Prokopiev V.E. Laser-induced nitrogen oxide fluorescence from nitro compounds by 222 nm laser // J. Lumin. 2023. V. 263. P. 120073. DOI: 10.1016/j.jlumin.2023.120073.
9. Puchikin A.V., Panchenko Yu.N., Yampolskaya S.A., Andreev M.V., Prokopiev V.E. Laser-induced fluorescence of vibrationally excited nitric oxide by femtosecond laser pulse // J. Lumin. V. 2024. V. 268. P. 120412. DOI: 10.1016/j.jlumin.2023.120412.
10. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331. DOI: 10.1016/S0030-4018(02)01250-6.
11. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672. DOI: 10.1007/s003400000382.
12. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7. DOI: 10.1117/12.887918.
13. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Laser-induced fluorescence of PO-photofragments of dimethyl methylphosphonate // Appl. Opt. 2022. V. 61, N 21. P. 6322‒6329. DOI: 10.1364/AO.456005.
14. Bottorff B., Reidy E., Mielke L., Dusanter S., Stevens P.S. Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere // Adv. Mater. Technol. 2021. V. 14, N 9. P. 6039–6059. DOI: 10.5194/amt-14-6039-2021.
15. Liao W., Hecobian A., Mastromarino J., Tan D. Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid // Atmos. Environ. 2006. V. 40, N 1. P. 17–26. DOI: 10.1016/j.atmosenv.2005.07.001.
16. Liao W., Case A.T., Mastromarino J., Tan D., Dibb J.E. Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003 // Geophys. Res. Lett. 2006. V. 33, N 9. P. L09810-1–4. DOI: 10.1029/2005GL025470.
17. Li B., Zhang D., Yao M., Li Z. Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence // Proc. Combust. Inst. 2017. V. 36, N 3. P. 4487–495. DOI: 10.1016/j.proci.2016.07.082.
18. Li B., Jonsson M., Algotsson M., Bood J., Li Z.S., Johansson O., Aldén M., Tunér M., Johansson B. Quantitative detection of hydrogen peroxide in an HCCI engine using photofragmentation laser-induced fluorescence // Proc. Combust. Inst. 2013. V. 34, N 2. P. 3573–3581. DOI: 10.1016/j.proci.2012.05.080.
19. Han L., Gao Q., Li B., Li Z. Flame front visualization in highly turbulent jet flames using CH3 photofragmentation laser-induced fluorescence // Opt. Laser Technol. 2023. V. 159. P. 109014. DOI: 10.1016/j.optlastec.2022.109014.
20. Leffler T., Brackmann C., Aldén M., Li Z. Laser-induced photofragmentation fluorescence imaging of alkali compounds in flames // Appl. Spectrosc. 2017. V. 71, N 6. P. 1289–1299. DOI: 10.1177/0003702816681010.
21. Carter C.D., Skiba A.W. CH3 imaging via photo-fragmentation combined with CH planar laser-induced fluorescence employing C–X (0,0) band excitation and detection // Combust. Flame. 2023. V. 254. P. 112851. DOI: 10.1016/j.combustflame.2023.112851.
22. Van den Bekerom D., Richards C., Huang E., Adamovich I., Frank J.H. 2D imaging of absolute methyl concentrations in nanosecond pulsed plasma by photo-fragmentation laser-induced fluorescence // PSST. 2022. V. 31. P. 095018. DOI: 10.1088/1361-6595/ac8f6c.
23. Van den Bekerom D., Tahiyat M., Huang E., Frank J., Farouk T., Farouk T. 2D-imaging of absolute OH and H2O2 profiles in a He–H2O nanosecond pulsed dielectric barrier discharge by photo-fragmentation laser-induced fluorescence // PSST. 2023. V. 32, N 1. P. 015006. DOI: 10.1088/1361-6595/acaa53.
24. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Aksenov V.A., Kikhtenko A.V., Tivileva M.I. Remote detector of explosive traces // Proc. SPIE. 2014. V. 9292. P. 92922G-1–4. DOI: 10.1117/12.2074055.
25. Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF laser for lidar systems // IEEE J. Quantum. Electron. 2021. V. 57, N 2. P. 1–5. DOI: 10.1109/JQE.2021.3049579.
26. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 175–185. DOI: 10.15372/AOO20220301.
27. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laserinduced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497–7502. DOI: 10.1364/AO.58.007497.
28. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90, N 17. P. 3994–3998. DOI: 10.1021/j100408a033.
29. Douglas K.M., Blitz M.A., Mangan T.P., Plane J.M.C. Experimental study of the removal of ground- and excited-state phosphorus atoms by atmospherically relevant species // J. Phys. Chem. A. 2019. V. 123. P. 9469–9478. DOI: 10.1021/acs.jpca.9b07855.