Vol. 37, issue 07, article # 6

Gruzdev A. N., Elokhov A. S. Comparison of atmospheric nitrogen dioxide content data derived from satellite (OMI) and ground-based (NDACC) measurements. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 578–586. DOI: 10.15372/AOO20240706 [in Russian].
Copy the reference to clipboard
Abstract:

Comparison of results of satellite measurements by results of independent measurements is an esencial and necessary component of validation of satellite data, justifying their use for scientific and practical tasks. The work compares the results of spectrometric measurements of the NO2 content in the atmosphere by the Ozone Monitoring Instrument (OMI) in 2004–2020 with the results of ground-based twilight zenith measurements at 14 stations of the Network for the Detection of Atmospheric Composition Change (NDACC). Latitudinal distributions of quantitative characteristics of the comparison have been obtained, including the NO2 contents, their differences, and correlation and linear regression coefficients between the satellite and ground-based data. Criteria for validation of interannual and long-term changes in NO2 derived from the OMI data with the help of ground-based measurements are proposed. The latitudinal – hemispheric and regional – features of the correspondence between the satellite and ground-based data have been revealed. Significantly new results have been obtained on the dependence of the comparison characteristics on the level of pollution of the lower troposphere with nitrogen oxides and on the time scale of NO2 variations: day-to-day, seasonal and interannual. The results will be useful in analysis of NO2 variability based on OMI data. The continuation of this work may be a comparison of the results of the analysis of interannual variations and long-term NO2 trends obtained on the basis of the OMI and ground-based measurement data.

Keywords:

nitrogen dioxide, spectrometric measurements, OMI, NDACC, comparison

References:

1. Boersma K.F., Jakob D.J., Eskes H.J., Pinder R.W., Wang J., van der A R.J. Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space // J. Geophys. Res. 2008. V. 113, N D16S26. DOI: 10.1029/2007JD008816.
2. Celarier E.A., Brinksma E.J., Gleason J.F., Veefkind J.P., Cede A., Herman J.R., Ionov D., Goutail F., Pommereau J.P., Lambert J.C., van Roozendael M., Pinardi G., Wittrock F., Schonhardt A., Richter A., Ibrahim O.W., Wagner T., Bojkov B. Mount G., Spinei E., Chen C.M., Pongetti T.J., Sander S.P., Bucsela E.J., Wenig M.O., Swart D.P.J., Volten H., Kroon M., Levelt P.F. Validation of Ozone Monitoring Instrument nitrogen dioxide columns // J. Geophys. Res. 2008. V. 113, N D15S15. DOI: 10.1029/2007JD008908.
3. Ionov D.V., Timofeyev Y.M., Sinyakov V.P., Semenov V.K., Goutail F., Pommereau J.-P., Bucsela E.J., Celarier E.A., Kroon M. Ground-based validation of EOS-Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) // J. Geophys. Res. 2008. V. 113, N D15S08. DOI: 10.1029/2007JD008659.
4. Irie H., Kanaya Y., Akimoto H., Tanimoto H., Wang Z., Gleason J.F., Bucsela E.J. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006 // Atmos. Chem. Phys. 2008. V. 8. P. 6577–6586.
5. Kramer L.J., Leigh R.J., Remedios J.J., Monks P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area // J. Geophys. Res. 2008. V. 113. D16S39. DOI: 10.1029/2007JD009168.
6. Wenig M.O., Cede A.M., Bucsela E.J., Celarier E.A., Boersma K.F., Veefkind J.P., Brinksma E.J., Gleason J.F., Herman J.R. Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center // J. Geophys. Res. 2008. V. 113, N D16S45. DOI: 10.1029/2007JD008988.
7. Gruzdev A.N., Eloxov A.S. Validatsiya rezul'tatov izmerenii soderzhaniya NO2 v vertikal'nom stolbe atmosfery s pomoshch'yu pribora OMI s borta sputnika EOS-Aura po dannym nazemnyx izmerenii na Zvenigorodskoi nauchnoi stantsii // Izv. RAN. Fiz. atmosf. i okeana. 2009. V. 45, N 4. P. 477–488.
8. Gruzdev A.N., Elokhov A.S. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia // Int. J. Remote Sens. 2010. V. 31, N 2. P. 497–511. DOI: 10.1080/01431160902893527.
9. Bucsela E.J., Krotkov N.A., Celarier E.A., Lamsal L.N., Swartz W.H., Bhartia P.K., Boersma F., Veefkind J.P., Gleason J.F., Pickering K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI // J. Meas. Technol. 2013. V. 6. P. 2607–2626.
10. Gruzdev A.N., Eloxov A.S. Sopostavlenie rezul'tatov mnogoletnix izmerenii soderzhaniya NO2 v stratosfere i troposfere s pomoshch'yu sputnikovogo pribora OMI s rezul'tatami nazemnyx izmerenii // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 1. P. 88–111. DOI: 10.31857/S0002351523010054; Gruzdev A.N., Elokhov A.S. Comparison of data of OMI long-term measurements of NO2 contents in the stratosphere and troposphere with the results of ground-based measurements // Izvestiya, Atmos. Oceanic Phys. 2023. V. 59, N 1. P. 78–99. DOI: 10.1134/S000143382301005X.
11. Levelt P.F., Joiner J., Tamminen J., Veefkind J.P., Bhartia P.K., Zweers D.C.S., Duncan B.N., Streets D.G., Eskes H., Van Der R.A., McLinden C., Fioletov V., Carn S., de Laat J., DeLand M., Marchenko S., McPeters R., Ziemke J., Fu D., Liu X., Pickering K., Apituley A., Abad G.G., Arola A., Boersma F., Miller C.C., Chance K., de Graaf M., Hakkarainen J., Hassinen S., Ialongo J., Kleipool Q., Krotkov N., Li C., Lamsal L., Newman P., Nowlan C., Suleiman R., Tilstra L.J., Torres O., Wang H., Wargan K. The Ozone Monitoring Instrument: Overview of 14 years in space // Atmos. Chem. Phys. 2018. V. 18. P. 5600–5745. DOI: 10.5194/acp-18-5699-2018.
12. Johnston P.V., McKenzie R.L. NO2 observations at 45° S during the decreasing phase of solar cycle 21, from 1980 to 1987 // J. Geophys. Res. V. 94. N D3. P. 3473–3486.
13. Vaughan G., Quinn P.T., Green A.C., Bean J., Roscoe H.K., van Roozendael M., Goutail F. SAOZ measurements of NO2 at Aberystwyth // J. Environ. Monit. 2006. V. 8. P. 353–361. DOI: 10.1039/b511482a.
14. Aura OMI Version 3 Level 2 Overpass Data. URL: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/ V03/L2OVP/OMNO2/ (data obrashcheniya: 22.01.2023).
15. NDACC. URL: https://ndacc.larc.nasa.gov/instruments/uv-visible-spectrometer (data obrashcheniya: 22.01.2023).
16. Eloxov A.S., Gruzdev A.N. Izmereniya obshchego soderzhaniya i vertikal'nogo raspredeleniya NO2 na Zvenigorodskoi nauchnoi stantsii // Izv. RAN. Fiz. atmosf. i okeana. 2000. V. 36, N 6. P. 831–846.
17. Gruzdev A.N., Eloxov A.S. Izmeneniya obshchego soderzhaniya i vertikal'nogo raspredeleniya NO2 po rezul'tatam 30-letnix izmerenii na Zvenigorodskoi nauchnoi stantsii IFA im. A.M. Obuxova RAN // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 1. P. 99–112. DOI: 10.31857/S0002351521010089; Gruzdev A.N., Elokhov A.S. Changes in the column content and vertical distribution of NO2 according to the results of 30-year measurements at the Zvenigorod Scientific Station of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences // Izvestiya, Atmospheric and Oceanic Physics. 2021. V. 57, N 1. P. 91–103.