Vol. 37, issue 08, article # 1

Starikov V. I. Estimation of nitrogen and oxygen shift coefficients of water vapor in the visible region. // Optika Atmosfery i Okeana. 2024. V. 37. No. 08. P. 627–633. DOI: 10.15372/AOO20240801 [in Russian].
Copy the reference to clipboard
Abstract:

An analytical model δ(sur) is suggested for nitrogen and oxygen shift coefficients of water vapor in the visible region. The model δ(sur) linearly depends on the broadening coefficient of a given line and fitted parameters. The analysis of the available experimental data on d coefficients for the near infrared and visible regions is performed. The model δ(sur) retrieves 486 nitrogen shift coefficients for lines from the range 13550–22590 cm-1 with a mean square deviation of 6.0 × 10-3 cm-1/atm and oxygen shift coefficient for lines from the range 13550–14000 cm-1 with a mean square deviation of 2.5 × 10-3 cm-1/atm.

Keywords:

water vapor, nitrogen, oxygen, shifting coefficient, analytical modeling, visible range

References:

1. Starikov V.I. Analiz i analiticheskoe predstavlenie koeffitsientov ushireniya linii vodyanogo para davleniem vozdukha, azota, kisloroda i uglekislogo gaza dlya spektral'nogo diapazona 380–26000 cm1 // Opt. i spektroskop. 2022. V. 130. PС. 1316–1326. DOI: 10.21883/0000000000.
2. Grossmann B.E., Browell E.V. Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138. P. 562–595. DOI: 10.1016/0022-2852(89)90019-2.
3. Tsao C.J., Curnutte B. Line-widths of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2, N 1. P. 41–91.
4. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73. P. 5432–5450.
5. Bauer A., Godon M., Keddar M., Hartmann J.M., Bonamy J., Robert D. Temperature and perturber dependences of water vapor 380 GHz-line-broadening // J. Quant. Spectrosc. Radiat. Transfer. 1987. V. 37. P. 531–539.
6. Delaye C., Hartmann J.-M., Taine J. Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature // Appl. Opt. 1989. V. 28. P. 5080–5087.
7. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94. P. 5883–5890. DOI: 10.1063/1.460472.
8. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Dudaryonok A.S. Study of the H2O dipole moment and polarizability vibrational dependence by the analysis of rovibrational line shifts // Spectroch. Acta Part A. 2019. V. 210. P. 275–280. DOI: 10.1016/j.saa2018.11.032.
9. Radtsik A.A., Smirnov B.M. Spravochnik po atomnoi i molekulyarnoi fizike. M.: Atomizdat, 1980. 240 p.
10. Hoshina H., Seta T., Iwamoto T., Hosako I., Otani C., Kasai Y. Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2303–2314. DOI: 10.1016/j.jqsrt.2008.03.005.
11. Eng R.S., Mant A.W. Tunable diode laser measurement of water vapor line parameters in the 10- to 15-mm spectral region // J. Mol. Spectrosc. 1979. V. 74. P. 388–399.
12. Hartmann J.M., Taine J., Bonamy J., Labani B., Robert D. Collisinal broadening of rotation-vibration lines of asymmetric – top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range // J. Chem. Phys. 1987. V. 86. P. 144–155.
13. Mucha J.A. Tunable diode laser measurements of water vapor line parameters in the 6-mm spectral region // Appl. Spectrosc. 1982. V. 36. P. 141–147.
14. Serdyukov V.I., Sinitsa L.N., Vasilchenko S.S., Lavrentieva N.N., Dudaryonok A.S., Scherbakov A.P. Study of Н2О line broadening and shifting by N2 pressure in the 16.600–17.060 cm-1 region using FT-spectrometer with LED source // J. Quant. Spectros. Radiat. Transfer. 2018. V. 219. P. 213–223. DOI: 10.1016/j.jqsrt.2018.08.014.
15. Serdyukov V.I., Sinitsa L.N., Dudaryonok A.S., Lavrentieva N.N. Measurements and theoretical estimation of N2-broadening and -shifting coefficients of the water vapor spectral lines in the 22.330–22.590 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 272. Р. 107763. DOI: 10.1016/j.jqsrt.2021.107763.
16. Petrova T.M., Solodov A.M., Solodov A.A. Izmereniya koeffitsientov ushireniya i sdviga tsentrov linii pogloshcheniya vody v oblasti 8650–9020 cm1 davleniem atmosfernykh gazov // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 543–548; Petrova T.M., Solodov A.M., Solodov A.A. Measurements of water vapor line shifts in the 8650–9020 cm-1 region caused by pressure of atmospheric gases // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 455–461.
17. Bandyopadhyay A., Ray B., Ghosh P.N., Niles D.L., Gamache R.R. Diode laser spectroscopic measurements and theoretical calculations of line parameters of nitrogen-broadened water vapor overtone transitions in the 818–834 nm wavelength region // J. Mol. Spectrosc. 2007. V. 242. P. 10–16. DOI: 10.1016/j.jms.2006.12.008.
18. Гроссман Б.Э., Броуэлл Э.В., Быков А.Д., Капитанов В.А., Коротченко Е.А., Лазарев В.В., Пономарев Ю.Н., Синица Л.Н., Стройнова В.Н., Тихомиров Б.А. Исследование сдвигов линий поглощения Н2О в видимой области спектра давлением воздуха // Оптика атмосф. и океана. 1990. V. 3, N 7. P. 675–689.
19. Serdyukov V.I., Sinitsa L.N., Lavrentieva N.N., Dudaryonok A.S. Measurements of N2-broadening and -shifting parameters of the water vapor spectral lines in the 19,560–19,920 cm-1 region using FT-spectrometer with LED source // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 234. P. 47–54. DOI: 10.1016/j.jqsrt.2019.06.003.