Vol. 37, issue 08, article # 12

Zinoviev M. M., Kuznetsov V. S., Yudin N. N., Slyunko E. S., Podzyvalov S. N., Lysenko A. B., Kalsin A. Yu., Gabdrakhmanov A. Sh., Vlasov D. V. Influence of the composition and morphology of dielectric mirrors of LIDAR complexes on their optical breakdown threshold. // Optika Atmosfery i Okeana. 2024. V. 37. No. 08. P. 711–716. DOI: 10.15372/AOO20240812 [in Russian].
Copy the reference to clipboard
Abstract:

The paper presents the results of studying the influence of the morphology and composition of thin films that form the structure of dielectric mirrors of optical resonators of coherent sources for LIDARs. The Optilayer software simulated dielectric mirrors based on two pairs of materials: TiO2/SiO2 and ZnS/YbF3. Using electron and atomic force microscopy, their morphological features were determined. The calculated structure of the interference coating was deposited onto a substrate using the ion-beam sputtering method. The threshold of laser-induced breakdown of dielectric mirrors by Nd:YAG laser radiation at a wavelength of 1064 nm was found to be 4 J/cm2 for a TiO2/SiO2 mirror and 4 J/cm2 for a ZnS/YbF3 mirror.

Keywords:

dielectric mirror, LIDAR, substrate, quartz, morphology, optical breakdown

References:

1. Boreisho A.S., Konyaev M.A., Morozov A.V., Pikulik A.V., Savin A.V., Trilis A.V., Chakchir S.Ya., Boiko N.I., Vlasov Yu.N., Nikitaev S.P.,. Rozhnov A.V. Mobil'nye mnogovolnovye lidarnye kompleksy // Kvant. elektron. 2005. V. 35, N 12. P. 1167–1178.
2. Balin Yu.S., Bairashin G.S., Kokhanenko G.P., Klemasheva M.G., Penner I.E., Samoilova S.V. Aerozol'no-ramanovskii lidar «LOZA-M2» // Kvant. elektron. 2011. V. 41, N 10. P. 945–949.
3. Jiang Y., Fu X., Liu Qi. High energy LiDAR source for long distance, high resolution range imaging // Microwave Opt. Technol. Lett. 2020. V. 62. P. 3655–3661. DOI: 10.1002/mop.32650.
4. Vanyakin A.V., Zheleznov V.I., Kulevskii L.A., Lukashev A.V., Morozov N.P., Orlov N.A. Interferentsionnaya optika dlya lazerov i parametricheskikh generatorov srednego IK-diapazona // Kvant. elektron. 1997. V. 24, N 2. P. 142–144.
5. Wang L., Jiang Y., Jiang C., Liu H., Ji Y., Zhang F., Fan R., Chen D. Effect of oxygen flow rate on microstructure properties of SiO2 thin films prepared by ion beam sputtering // J. Non-Crystal. Sol. 2018. V. 482. P. 203–207. DOI: 10.1016/j.jnoncrysol.2017.12.046.
6. Langston P.F., Krous E., Schiltz D., Patel D., Emmert L., Markosyan A., Reagan B., Wernsing K., Xu Y., Sun Z., Route R., Fejer M.M., Rocca J.J., Rudolph W., Menoni C.S. Point defects in Sc2O3 thin films by ion beam sputtering // Appl. Opt. 2014. V. 53. P. A276–A280. DOI: 10.1364/AO.53.00A276.
7. Raider S.I., Flitsch R. Stoichiometry of SiO2/Si interfacial regions. I. Ultrathin oxide films // J. Vac. Sci. Technol. 1976. V. 13, N 1. P. 58. DOI: 10.1116/1.568955.
8. Hickmot T.W., Baglin J.E. Stoichiometry and atomic defects in rf-sputtered SiO2 // J. Appl. Phys. 1979. V. 50, N 1. P. 317–323. DOI: 10.1063/1.325662.
9. Telesh E.V., Kasinskii N.K., Tomal' V.S.. Formirovanie pokrytii ionno-luchevym raspyleniem dielektricheskikh mishenei // Vestn. Polotskogo gos. un-ta. Ser. С. 2012. V. 4. P. 70–76.
10. Liu H., Jensen L., Becker J., Wurz M.C., Ma P., Ristau D. Comparison of ALD and IBS Al2O3 films for high power lasers // Proc. SPIE. 2016. N 10014. P. 1001421. DOI: 10.1117/12.2245051.
11. Guo J., Fei X., Ge P., Li Z., Lv Y., Sheng L. A 1064 nm single-photon lidar for three-dimensional imaging // J. Phys.: Conf. Ser. 2021. V. 1983. DOI: 10.1088/1742-6596/1983/1/012093.
12. Kuzuu N., Yoshida K., Yoshida H., Kamimura T., Kamisugi N. Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: Evidence of different damage mechanisms between 266-nm and longer wavelengths // Appl. Opt. 1999. V. 38. P. 2510–2515. DOI: 10.1364/ao.38.002510.
13. Zhang Y., Xiong S., Huang W. Study on defects in ZnS/YbF3 infrared coatings on silicon substrates // Surf. Coat. Technol. 2017. V. 320. P. 3–6. DOI: 10.1016/j.surfcoat.2017.03.023.
14. ISO 11146-1:2021; Lasers and Laser-Related Equipment. Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios. Part 1: Stigmatic and Simple Astigmatic Beams. URL: https://www.iso.org/standard/77769.html (last access: 09.04.2024).