Vol. 37, issue 08, article # 5

Makarova M. V., Foka S. Ch., Ionov D. V., Kostsov V. S., Ivakhov V. M., Paramonova N. N. Characterizing greenhouse gas emissions from the territory of the St. Petersburg agglomeration by the results of the mobile observational campaigns EMME-2019 and EMME-2020. // Optika Atmosfery i Okeana. 2024. V. 37. No. 08. P. 653–664. DOI: 10.15372/AOO20240805 [in Russian].
Copy the reference to clipboard
Abstract:

St. Petersburg is the second most populous city in the Russian Federation and the fourth in Europe. According to official statistics, ~ 5.6 million people live in the city permanently. In order to experimentally estimate greenhouse gas emissions from the territory of the St. Petersburg agglomeration, an original combined approach was developed and implemented during EMME-2019 and ЕММЕ-2020 observational campaign. The paper summarizes the results of mobile experiments in 2019 and 2020. It is shown that the period “March – early May”, chosen for the EMME campaigns, is optimal for estimating CO2 emissions. It was found that the average values of anthropogenic additives caused by emissions from the territory of St. Petersburg are ~ 1.07 ppmv and ~ 6.61 ppbv for CO2 and CH4, respectively. Experimental estimates of specific greenhouse gas fluxes for the territory of the St. Petersburg agglomeration amounted to 72 kt × km-2 × year-1 CO2 and 198 t × km-2 × year-1 CH4 for six days of 2020 campaign; 80 kt × km-2 × year-1 CO2 and 161 t × km-2 × year-1 CH4 for 15 days of campaigns 2019 and 2020. The CH4/CO2 and CO/CO2 emission ratios for St. Petersburg in March – early May 2020 averaged 6.4 and 5.7 ppbv/ppmv, respectively. Quarantine restrictions (COVID-19) affected the emission structure of St. Petersburg: a sharp decrease in transport activity led to a significant decrease in CO emissions from motor vehicles.

Keywords:

ground-based remote sensing, portable FTIR-spectrometers, mobile experiments, greenhouse gases, anthropogenic emissions in megacities, transport modelling of air pollutants

References:

1. WMO. Greenhouse Gas Bulletin. No. 18. 26 October 2022. URL: https://library.wmo.int/idurl/4/58743 (last access: 22.02.2024).
2. Ciais P., Crisp D., Gon H.V.D., Engelen R., Heimann M., Janssens-Maenhout G., Rayner P., Scholze M. Towards a European Operational Observing System to Monitor Fossil CO2 Emissions – Final Report from the Expert Group. European Commission, 2015. URL: https: //www.copernicus.eu/sites/default/files/2019-09/CO2_Blue_report_2015.pdf (last access: 22.02.2024).
3. Babenhauserheide A., Hase F., Morino I. Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes // Atmos. Meas. Tech. 2020. V. 13. P. 2697–2710. URL: https://doi.org/10.5194/amt-13-2697-2020.
4. Che K., Cai Zh., Liu Y., Wu L., Yang D., Chen Y., Meng X., Zhou M., Wang J., Yao L., Wang P. Lagrangian inversion of anthropogenic CO2 emissions from Beijing using differential column measurements // Environ. Res. Lett. 2022. V. 17, N 7. 075001. DOI: 10.1088/1748-9326/ac7477.
5. Hase F., Frey M., Blumenstock T., Groß J., Kiel M., Kohlhepp R., Mengistu Tsidu G., Schäfer K., Sha M.K., Orphal J. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin // Atmos. Meas. Tech. 2015. V. 8. P. 3059–3068. URL: https://doi.org/10.5194/amt-8-3059-2015.
6. Ohyama H., Frey M.M., Morino I., Shiomi K., Nishihashi M., Miyauchi T., Yamada H., Saito M., Wakasa M., Blumenstock T., Hase F. Anthropogenic CO2 emission estimates in the Tokyo metropolitan area from ground-based CO2 column observations // Atmos. Chem. Phys. 2023. V. 23. P. 15097–15119.
7. Vogel F.R., Frey M., Staufer J., Hase F., Broquet G., Xueref-Remy I., Chevallier F., Ciais P., Sha M.K., Chelin P., Jeseck P., Janssen C., Té Y., Groß J., Blumenstock T., Tu Q., Orphal J. XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015 // Atmos. Chem. Phys. 2019. V. 19. P. 3271–3285.
8. Zhao X., Marshall J., Hachinger S., Gerbig C., Frey M., Hase F., Chen J. Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG // Atmos. Chem. Phys. 2019. V. 19. P. 11279–11302.
9. Makarova M.V., Alberti C., Ionov D.V., Hase F., Foka S.C., Blumenstock T., Warneke T., Virolainen Y.A., Kostsov V.S., Frey M., Poberovskii A.V., Timofeyev Y.M., Paramonova N.N., Volkova K.A., Zaitsev N.A., Biryukov E.Y., Osipov S.I., Makarov B.K., Polyakov A.V., Ivakhov V.M., Imhasin H.Kh., Mikhailov E.F. Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019 // Atmos. Meas. Tech. 2021. V. 14. P. 1047–1073.
10. Ionov D. V., Makarova M.V., Hase F., Foka S.C., Kostsov V.S., Alberti C., Blumenstock T., Warneke T., Virolainen Y.A. The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling // Atmos. Chem. Phys. 2021. V. 21. P. 10939–10963.
11. Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition // Aust. Meteor. Mag. 1998. V. 47. P. 295–308.
12. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteor. Soc. V. 96. P. 2059–2077.
13. Frey M., Sha M.K., Hase F., Kiel M., Blumenstock T., Harig R., Surawicz G., Deutscher N.M., Shiomi K., Franklin J.E., Bösch H., Chen J., Grutter M., Ohyama H., Sun Y., Butz A., Mengistu Tsidu G., Ene D., Wunch D., Cao Z., Garcia O., Ramonet M., Vogel F., Orphal J. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer // Atmos. Meas. Tech. 2019. V. 12. P. 1513–1530.
14. de Foy B., Schauer J.J., Lorente A., Borsdorff T. Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater // Environ. Res. Lett. 2023. V. 18. 044004. DOI: 10.1088/1748-9326/acc118.
15. Chen J., Dietrich F., Franklin J.E., Jones T.S., André B., Luther A., Kleinschek R., Hase F., Wenig M., Ye S., Nouri A., Frey M., Knote C., Alberti C., Wofsy S. Mesoscale column net-work for assessing GHG and NOx emissions in Munich // EGU General Assembly Conference Abstracts. 2018. V. 20.
16. Franklin J.E., Jones T.S., Chen J., Parker H., Hedelius J., Wennberg P., Dubey M.K., Cohen Ron C., Guha A., Sargent M., Davis K.J., Mielke L., Fischer M., Wofsy S. A three-dimensional observation network for determining urban emissions of CO2 and CH4 // 2017 North American Carbon Program, North Bethesda, MD, USA. 2017. URL: https://www.nacarbon.org/meeting_2017 /abs_and_discussions/ mtg2017_ab_searchab_id161.html (last access: 22.02.2024).
17. Chen J., Viatte C., Hedelius J.K., Jones T., Franklin J.E., Parker H., Gottlieb E.W., Wennberg P.O., Dubey M.K., Wofsy S.C. Differential column measurements using compact solar-tracking spectrometers // Atmos. Chem. Phys. 2016. V. 16. P. 8479–8498. DOI: 10.5194/acp-16-8479-2016.
18. Serebritskii I.A. Opyt Sankt-Peterburga v voprosakh upravleniya adaptatsiei k izmeneniyam klimata i smyagcheniya antropogennogo vozdeistviya na klimaticheskuyu sistemu: informatsionno-analiticheskaya zapiska // Ekologicheskii portal Sankt-Peterburga. SPb., 2024. URL: https://www.infoeco.ru/index.php?id= 8780.
19. Huo D., Huang X., Dou X., Ciais P., Li Y., Deng Z., Wang Y., Cui D., Benkhelifa F., Sun T., Zhu B., Roest G., Gurney K.R., Ke P., Guo R., Lu C., Lin X., Lovell A., Appleby K., DeCola P.L., Steven J., Davis S.J., Liu Z. Carbon Monitor Cities near-real-time daily estimates of CO2 emissions from 1500 cities worldwide // Sci Data. 2022. V. 9. P. 533. DOI: 10.1038/s41597-022-01657-z.
20. Crippa M., Solazzo E., Huang G., Guizzardi D., Koffi E., Muntean M., Schieberle C., Friedrich R. Janssens-Maenhout G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research // Sci Data. 2020. V. 7. P. 121. DOI: 10.1038/s41597-020-0462-2.
21. Makarova M.V., Arabadzhyan D.K., Foka S.Ch., Paramonova N.N., Poberovskii A.V., Timofeev Yu.M., Pankratova N.V., Rakitin V.S.. Otsenka nochnykh emissii uglerodsoderzhashchikh gazov v prigorodakh Sankt-Peterburga // Meteorol. i gidrol. 2018. N 7. P. 36–44.
22. Makarova M.V., Poberovskii A.V., Yagovkina S.V., Karol' I.L., Lagun V.E., Paramonova N.N., Reshetnikov A.I., Privalov V.I. Issledovaniya protsessov formirovaniyakh polya metana v atmosfere Severo-Zapadnogo regiona Rossiiskoi Federatsii // Izv. RAN. Fiz. atmosf. i okeana. 2006. V. 42, N 2. P. 237–249.
23. Zinchenko A.V., Paramonova N.N., Privalov V.I., Reshetnikov A.I. Estimation of methane emissions in the St. Petersburg, Russia, region: An atmospheric nocturnal boundary layer budget approach // J. Geophys. Res. 2002. V. 107, N D20. P. 4416. DOI: 10.1029/2001JD001369.
24. Font A., Grimmond C.S.B., Kotthaus S., Morguí J.-A., Stockdale C., O’Connor E., Priestman M., Barratt B. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London // Environ. Pollut. 2015. V. 196. P. 98–106. DOI: 10.1016/j.envpol.2014.10.001.
25. Cheng X.L., Liu X.M., Liu Y.J., Hu F. Characteristics of CO2 concentration and flux in the Beijing urban area // J. Geophys. Res. Atmos. 2018. V. 123. P. 1785–1801. DOI: 10.1002/2017JD027409.
26. Park C., Jeong S., Park M.S., Yun J., Lee S.-S., Park S.-H. Spatiotemporal variations in urban CO2 flux with land-use types in Seoul // Carbon Balance Manag. 2022. V. 17, N 3. DOI: 10.1186/s13021-022-00206-w.
27. O’Shea S.J., Allen G., Fleming Z.L., Bauguitte S.J.-B., Percival C.J., Gallagher M.W., Lee J., Helfter C., Nemitz E. Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012 // J. Geophys. Res.: Atmos. 2014. V. 119. P. 4940–4952. DOI: 10.1002/2013JD021269.
28. Zimnoch M., Godlowska J., Necki J.M., Rozanski K. Assessing surface fluxes of CO2 and CH4 in urban environment: A reconnaissance study in Krakow, Southern Poland // Tellus B. 2010. V. 62. P. 573–580. DOI: 10.1111/j.1600-0889.2010.00489.x.
29. Zinchenko A.V., Reshetnikov A.I., Paramonova N.N., Privalov V.I., Titov V.S., Kazakova K.V., Katsnel'son B.P. Issledovanie emissii metana i dioksida ugleroda na poligonakh zakhoroneniya tverdykh bytovykh otkhodov v okrestnostyakh Sankt-Peterburga // Prikladnaya meteorologiya. Trudy Nauchno-issledovatel'skogo tsentra distantsionnogo zondirovaniya atmosfery (filiala GGO). 2002. Iss. 4. N 552. P. 126–138.
30. Silva S.J., Arellano A.F., Worden H.M. Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity // Geophys. Res. Lett. 2013. V. 40 P. 4971–4976. DOI: 10.1002/grl.50954.
31. Komitet po prirodopol'zovaniyu, okhrane okruzhayushchei sredy i obespecheniyu ekologicheskoi bezopasnosti. Doklad ob ekologicheskoi situatsii v Sankt-Peterburge v 2021 year. СПб., 2022. URL: https://www.gov.spb.ru/static/writable/ckeditor/uploads/ 2022/06/27/05/%D0%94%D0%BE%D0%BA%D0%BB%D0%B0%D0%B4_2022_%D1%81%D0%BE%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9.pdf (дата обращения: 22.02.2024).
32. Foka S.Ch., Makarova M.V., Poberovskii A.V., Ionov D.V., Abakumov E.V. Analiz kontsentratsii uglerodsoderzhashchikh gazov na stantsii atmosfernogo monitoringa SPbGU // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 934–941. DOI: 10.15372/AOO20231109; Foka S.Ch., Makarova M.V., Poberovsky A.V., Ionov D.V., Abakumov E.V. Analysis of mixing ratios of greenhouse carbon-containing gases at the atmospheric monitoring station of St. Petersburg State University // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 74–81.
33. Turnbull J., Sweeney C., Karion A., Newberger T., Tans P., Lehman S., Davis K.J., Miles N.L., Richardson S.J., Lauvaux T., Cambaliza M.O., Shepson P., Gurney K., Patarasuk R., Zondervan A. Towards quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment // J. Geophys. Res.: Atmos. 2015. V. 120. P. 292–312. DOI: 10.1002/2014JD022555.