Vol. 37, issue 08, article # 8

Pustovalov K. N., Nagorsky P. M., Oglezneva M. V., Smirnov S. V. Variability of the surface electric field under the influence of meteorological conditions according to observations in Tomsk. // Optika Atmosfery i Okeana. 2024. V. 37. No. 08. P. 681–687. DOI: 10.15372/AOO20240808 [in Russian].
Copy the reference to clipboard
Abstract:

The electric field of the atmosphere, along with electrical conductivity and ionization of air, is the main characteristic of atmospheric electricity, which is a set of electrical phenomena occurring in the atmosphere, including in clouds and precipitation. There is a close connection between the intensity (potential gradient) of the atmospheric electric field and the topography and landscape of an area and meteorological parameters. A disruption of the normal electric field, characteristic of fair-weather conditions, occurs during the formation and development of clouds, precipitation, thunderstorm, etc. In general, the variability of the electric field is determined by a number of individual or combined factors, both of global and regional (or local) character. Therefore, studying and understanding the functioning of the Global Electric Circuit and its local variability seems to be a relevant scientific problem, especially in the context of the modern climate change. The variability of the electric field potential gradient and meteorological parameters is analyzed in this work based on long-term observations in a large urban settlement. The analysis shows a pronounced dependence of the potential gradient on the wind direction in fair-weather conditions, especially in winter, associated, we believe, with aerosol transfer. We also found that the variability of the surface electric field, including seasonal and daily variations, under all meteorological conditions significantly differs from the variability under exceptionally fair-weather conditions. The results are in good agreement with similar studies at other observation sites located near large populated areas, and are of interest for simulating the state and variability of the Global Electric Circuit depending on various physiographic and meteorological conditions.

Keywords:

meteorological observations, atmospheric electricity, electric field potential gradient, wind direction

Figures:
References:

1. Chalmers Dzh.A. Atmosfernoe elektrichestvo. L.: Gidrometeoizdat, 1974. 420 p.
2. Krasnogorskaya N.V. Elektrichestvo nizhnikh sloev atmosfery i metody ego izmereniya. L.: Gidrometeoizdat, 1972. 323 p.
3. Israël H. Atmospheric Electricity. V. 2: Fields, Charges, Currents. Jerusalem: Israel Program for Scientific Translations, 1973. 365 p.
4. Harrison R.G. The Carnegie curve // Surv. Geophys. 2013. V. 34. P. 209–232. DOI: 10.1007/s10712-012-9210-2.
5. Mezuman K., Price C., Galanti E. On the spatial and temporal distribution of global thunderstorm cells // Environ. Res. Lett. 2014. V. 9, N 12. P. 124023. DOI: 10.1088/1748-9326/9/12/124023.
6. Pulinets S.A., Khachikyan G.Ya. Unitarnaya variatsiya v seismicheskom rezhime Zemli: Sootvetstvie krivoi Karnegi // Geomagnetizm i astronomiya. 2020. V. 60, N 6. P. 803–808.
7. Yaniv R., Yair Y., Price C., Katz Sh. Local and global impacts on the fair-weather electric field in Israel // Atmos. Res. 2016. V. 172–173. P. 119–125. DOI: 10.1016/j.atmosres.2015.12.025.
8. Anisimov S.V., Galichenko S.V., Mareev E.A. Electrodynamic properties and height of atmospheric convective boundary layer // Atmos. Res. 2017. V. 194. P. 119–129.
9. Ahmad N., Gurmani S.F., Basit A., Shah M.A., Iqbal T. Impact of local and global factors and meteorological parameters in temporal variation of atmospheric potential gradient // Adv. Space Res. 2021. V. 67. P. 2491–2503. DOI: 10.1016/j.asr.2021.01.046.
10. Adzhiev A.K., Kupovykh G.V. Izmereniya elektricheskogo polya atmosfery v vysokogornykh usloviyakh Priel'brus'ya // Izv. RAN. Fiz atmosf. i okeana. 2015. V. 51, N 6. P. 710–715.
11. Pkhalagov Yu.A., Uzhegov V.N., Ippolitov I.I., Vinarskii M.V. Issledovaniya vzaimosvyazei opticheskikh i elektricheskikh kharakteristik prizemnoi atmosfery // Optika atmosf. i okeana. 2005. V. 18, N 5–6. P. 416–420.
12. Harrison R.G. Aerosol-induced correlation between visibility and atmospheric electricity // J. Aerosol Sci. 2012. V. 52. P. 121–126. DOI: 10.1016/j.jaerosci.2012.04.011.
13. Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Dymovye shleify ot prirodnykh pozharov i elektricheskoe sostoyanie prizemnogo sloya atmosfery // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 155–161. DOI: 10.15372/AOO20220211; Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Smoke plumes from wildfires and the electrical state of the surface air layer // Atmos. Ocean. Opt. 2022 V. 35, N 4. P. 387–393.
14. Popov I.B. Osobennosti variatsii elektricheskoi provodimosti vozdukha vblizi Sankt-Peterburga // Trudy GGO. 2011. N 563. P. 149–165.
15. Zainetdinov B.G. Rezul'taty nablyudenii za elektricheskimi kharakteristikami prizemnogo sloya atmosfery v polyarnom regione // Trudy GGO. 2018. N 588. P. 47–61.
16. Bennett A.J., Harrison R.G. Atmospheric electricity in different weather conditions // Weather. 2007. V. 62. P. 277–283. DOI: 10.1002/wea.97.
17. Popov I.B. Statisticheskie otsenki vliyaniya razlichnykh meteorologicheskikh yavlenii na gradient elektricheskogo potentsiala atmosfery // Trudy GGO. 2008. N 558. P. 152–161.
18. Toropov A.A., Kozlov V.I., Mullayarov V.A., Starodubtsev S.A. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration // J. Atmos. Sol.-Terr. Phys. 2013. V. 94. P. 13–18. DOI: 10.1016/j.jastp.2012.12.020.
19. Smirnov S.E., Mikhailova G.A., Kapustina O.V. Variatsii kvazistaticheskogo elektricheskogo polya v prizemnoi atmosfere na Kamchatke vo vremya geomagnitnyx bur' v noyabre 2004 // Geomagnitizm i aeronomiya. 2013. V. 53, N 4. P. 532–545.
20. Klimenko V.V., Mareev E.A., Shatalina M.V., Shlyugaev Y.V., Sokolov V.V., Bulatov A.A., Denisov V.P. O statisticheskix xarakteristikax elektricheskix polei grozovyx oblakov v atmosfere // Izv. vuzov. Radiofiz. 2013. V. 56, N 11–12. P. 864–874.
21. Pustovalov K.N., Nagorskiy P.M. Sravnitel'nyi analiz elektricheskogo sostoyaniya prizemnogo sloya pri prokhozhdenii kuchevo-dozhdevykh oblakov v teplyi i kholodnyi periody goda // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 451–455. DOI: 10.15372/AOO20180605; Pustovalov K.N., Nagorskiy P.M. Comparative analysis of electric state of surface air layer during passage of cumulonimbus clouds in warm and cold seasons // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 685–689.
22. Katz S., Yair Y., Price C., Yaniv R., Silber I., Lynn B., Ziv B. Electrical properties of the 8–12th September, 2015 massive dust outbreak over the Levant // Atmos. Res. 2018. V. 201. P. 218–225. DOI: 10.1016/j.atmosres.2017.11.004.
23. Firstov P.P., Malkin E.I., Akbashev R.R., Druzhin G.I., Cherneva N.V., Holzworth R.H., Uvarov V.N., Stasiy I.E. Registration of atmospheric-electric effects from volcanic clouds on the Kamchatka Peninsula (Russia) // Atmosphere. 2020. V. 11. P. 634. DOI: 10.3390/atmos11060634.
24. Anisimov S.V., Shikhova N.M., Kleimenova N.G. Otklik magnitosfernoi buri v atmosfernom elektricheskim pole srednikh shirot // Geomagnetizm i astronomiya. 2021. V. 61, N 2. P. 172–183.
25. Yair Y., Yaniv R. The effects of fog on the atmospheric electrical field close to the surface // Atmosphere. 2023. V. 14, N 3. P. 549. DOI: 10.3390/atmos14030549.
26. Adushkin V.V., Rybnov Yu.S., Ryabova S.A., Spivak A.A., Tikhonova A.V. Geofizicheskie effekty serii sil'nykh zemletryasenii v Turtsii 06.02.2023 year // Fizika Zemli. 2023. N 6. P. 142–152.
27. Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. The electric field of the undisturbed atmosphere in the South of Western Siberia: A case study on Tomsk // Atmosphere. 2022. V. 13, N 4. P. 614. DOI: 10.3390/atmos13040614.
28. Kizhner L.I., Seraya N.Yu. Izmenenie rezhima vetra v Tomske v nachale XXI veka // Trudy GGO. 2015. N 576. P. 102–113.
29. Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. Ekstremal'nye aerozol'nye zagryazneniya atmosfery v zimnii period v Akademgorodke g. Tomska // Optika atmosf. i okeana. 2023. V. 36, N 9. P. 711–717. DOI: 10.15372/AOO20230902; Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. Extreme events of aerosol pollution of the atmosphere in winter in Tomsk Akademgorodok // Atmos. Ocean. Opt. 2023. V. 36, N S1. P. S65–S73.