Vol. 37, issue 09, article # 10

Belan B. D., Razenkov I. A., Rynkov K. A. Airborne lidar BSE-6 for remote detection of clear-air turbulence. // Optika Atmosfery i Okeana. 2024. V. 37. No. 09. P. 794–800. DOI: 10.15372/AOO20240910 [in Russian].
Copy the reference to clipboard
Abstract:

The substantiation of the design and technical description of the turbulent lidar BSE-6, intended for installation on board aircraft, is given. In order to reduce the overall dimensions of the system, both sides of the optical bench are used: a transceiver is installed on one side, and a receiving module is mounted on the other. The heat-generating elements are placed in separate insulated ventilated sections. To minimize the deformation of the optical bench, external air is pumped through its middle. The lidar adjustment procedure is described. The quality of the assembly and alignment was tested by comparing the theoretical calculation with real echo signals. The system was also tested for thermomechanical stability.

Keywords:

turbulent lidar, backscatter enhancement effect, clear air turbulence, aviation safety

References:

1. Rukovodstvo po prognozirovaniyu meteorologicheskix uslovii dlya aviatsii. L.: Gidrometeoizdat, 1985. 302 p.
2. Shakina N.P., Ivanova A.R. Prognozirovanie meteorologicheskix uslovii dlya aviatsii. M.: TRIADA LTD, 2016. 312 p.
3. Yaponskoe agentstvo aerokosmicheskix issledovanii. URL: https: // www.aero.jaxa.jp/eng/research/ star/safeavio/ (last access: 23.04.2024).
4. Informatsionnoe agentstvo OREANDA. URL: https://www.oreanda.ru/en/transport/ Boeing_and_JAXA_to_Flight-test/article1173457/ (last access: 23.04.2024).
5. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchaino neodnorodnyh sredakh // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
6. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
7. Razenkov I.A. Analiz tehnicheskih reshenii pri proektirovanii turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 766–776. DOI: 10.15372/AOO20220910; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158. DOI: 10.1134/S1024856023010141.
8. Kovalev V.A., Eichinger W.E. Elastic Lidar: Theory, Practice, and Analysis Methods. Wiley-IEEE, 2004. 616 p.
9. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere / C. Weitkamp (ed.). Berlin: Springer, 2005. 443 p. DOI: 10.1007/b106786.
10. Vorob’ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoi» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875. DOI: 10.15372/AOO20161012; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161. DOI: 10.1134/S1024856017020142.
11. Razenkov I.A. Metodika provedeniya izmerenii turbulentnym lidarom i sravnenie rezul'tatov zondirovaniya s nazemnymi nablyudeniyami // Optika atmosf. i okeana. 2024 (in print).
12. Razenkov I.A., Belan B.D., Mihal'chishin A.V., Ivlev G.A. Primenenie turbulentnogo lidara dlya obespecheniya avitsionnoi bezopasnosti // Optika atmosf. i okeana. 2024. V. 37, N 5. P. 393–402. DOI: 10.15372/AOO20240506.