Vol. 37, issue 09, article # 11

Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Romanovskii Ya. O. Lidar complex for monitoring the ozonosphere over Tomsk. // Optika Atmosfery i Okeana. 2024. V. 37. No. 09. P. 801–807. DOI: 10.15372/AOO20240911 [in Russian].
Copy the reference to clipboard
Abstract:

Ozone is a strong oxidizer, so monitoring the state of the ozonosphere is one of the most important tasks in ensuring the safety of human life and health. There are a number of methods for studying ozone, among which a special place is occupied by the lidar method of remote detection and identification using selective absorption of laser radiation due to its has maximal sensitivity. V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences solved the problem of monitoring the entire ozonosphere over Tomsk by combining existing lidar systems: three measuring systems of the Siberian Lidar Station and a mobile ozone lidar. Lidars are designed to study the ozonosphere using the method of differential absorption and scattering, as well as to study aerosol fields using single elastic scattering. The systems are based on SOLAR and LOTIS TII Nd:YAG lasers, a Lambda Physik laser, and receiving Cassegrain (0,35 m diameter) and Newton (0,5 m diameter) telescopes. Lidars operate in the photon counting mode and record lidar signals with a spatial resolution of 1.5 to 160 m at probing wavelengths of 299/341 nm in the altitude ranges ~ 0.1–12 km and ~ 5–20 km, and 308/353 nm in the altitude range ~ 15–45 km. By combining three measuring systems, a full-scale experiment of lidar sensing of the atmosphere in Tomsk was carried out. The result of retrieval of the vertical profile of ozone concentration is presented. For the first time in Russia, lidars have covered the entire ozonosphere. The lidar complex sounding results will be used in the network of Roshydromet stations, in adjusting the quasi-three-year model of the vertical distribution of ozone concentration and aerosol, in comparison of lidar and satellite data, and in assessing the influence of climate-forming factors in Western Siberia.

Keywords:

atmosphere, laser, lidar, lidar sensing, ozone

Figures:
References:

1. Belan B.D. Troposfernyi ozon. 1. Svoistva i rol' v prirodnykh i tekhnogennykh protsessakh // Optika atmosf. i okeana. 2008. V. 21, N 4. P. 299–322.
2. Belan B.D. Troposfernyi ozon. 2. Metody i sredstva izmereniya // Optika atmosf. i okeana. 2008. V. 21, N 5. P. 397–424.
3. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. Malabar: Krieger Publishing Company, 1992. 510 p.
4. Hassler B., Petropavlovskikh I., Staehelin J., August T., Bhartia P.K., Clerbaux C., Degenstein D., Mazière M. De, Dinelli B.M., Dudhia A., Dufour G., Frith S.M., Froidevaux L., Godin-Beekmann S., Granville J., Harris N.R.P., Hoppel K., Hubert D., Kasai Y., Kurylo M.J., Kyrölä E., Lambert J.-C., Levelt P.F., McElroy C.T., McPeters R.D., Munro R., Nakajima H., Parrish A., Raspollini P., Remsberg E.E., Rosenlof K.H., Rozanov A., Sano T., Sasano Y., Shiotani M., Smit H.G.J., Stiller G., Tamminen J., Tarasick D.W., Urban J., van der A R.J., Veefkind J.P., Vigouroux C., von Clarmann T., von Savigny C., Walker K.A., Weber M., Wild J., Zawodny J.M. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability // Atmos. Meas. Tech. 2014. V. 7, N 5. P. 1395–1427. DOI: 10.5194/amt-7-1395-2014.
5. Leblanc T., Brewer M.A., Wang P.S., Granados-Muñoz M.J., Strawbridge K.B., Travis M., Firanski B., Sullivan J.T., McGee T.J., Sumnicht G.K., Twigg L.W., Berkoff T.A., Carrion W., Gronoff G., Aknan A., Chen G., Alvarez R.J., Langford A.O., Senff C.J., Kirgis G., Johnson M.S., Kuang Shi, Newchurch M.J. Validation of the TOLNet lidars: The Southern California Ozone Observation Project (SCOOP) // Atmos. Meas. Tech. 2018. V. 11, N 11. P. 6137–6162. DOI: 10.5194/amt-11-6137-2018
6. Carswell A.I., Pal S.R., Steinbrecht W., Whiteway J.A., Ulitsky A., Wang T.Y. Lidar measurements of the middle atmosphere // Can. J. Phys. 1991. V. 69. P. 1076–1086.
7. Mytilinaios M., Papayannis A., Tsaknakis G.  Lower-free tropospheric ozone DIAL measurements over Athens, Greece // EPJ Web Conf. 2018. V. 176. P. 05025. DOI: 10.1051/epjconf/201817605025.
8. Yang L., Qiu J., Zheng S., Xia Q., Huang Q., Wang W., Pan J. Lidar measurement of aerosol, ozone and clouds in Beijing // Proc. SPIE. 2003. V. 4893. P. 45–51. DOI: 10.1117/12.466457.
9. Chen Z., Zhang J., Zhang T., Liu W., Liu W. Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014 // Sci. China Chem. 2015. V. 58. P. 1385–1392. DOI: 10.1007/s11426-015-5467-x.
10. Seabrook J., Whiteway J. Influence of mountains on Arctic tropospheric ozone // J. Geophys. Res.: Atmos. 2016. V. 121. P. 1935–1942. DOI: 10.1002/ 2015JD024114.
11. Steinbrecht W., McGee T.J., Twigg L.W., Claude H., Schönenborn F., Sumnicht G.K., Silbert D. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE) // Atmos. Meas. Tech. 2009. V. 2. P. 125–145. DOI: 10.5194/amt-2-125-2009.
12. Sullivan J.T., McGee T.J., Sumnicht G.K., Twigg L.W., Hoff R.M. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region // Atmos. Meas. Tech. 2014. V. 7. P. 3529–3548. DOI: 10.5194/amt-2-125-2009.
13. Shunxing H., Huanling H., Yonghua W., Jun Zh., Qi Fudi, Yue Guming. Atmospheric ozone measured by differential absorption lidar over Hefei // Proc. SPIE. 2003. V. 4893. DOI: 10.1117/12.466591.
14. Liu X., Zhang Y., Hu H., Tan K., Tao Z., Shao Sh., Cao K., Fang X., Yu Sh. Mobile lidar for measurements of SO2 and O3 in the low troposphere // Proc. SPIE 2005. V. 5832. DOI: 10.1117/12.619553.
15. Brinksma E.J., Swart D.P.J., Bergwerff J.B., Meijer Y.J., Ormel F.T. RIVM stratospheric ozone lidar at NDSC station lauder: Routine measurements and validation during the OPAL campaign // Adv. Atmos. Remote Sens. Lidar. 1996. P. 529–532. DOI: 10.1007/978-3-642-60612-0_128.
16. McDermid I.S., Walsh D.T., Deslis A., White M.L. Optical systems design for a stratospheric lidar system // Appl. Opt. 1995. V. 34. P. 6201–6210. DOI: 10.1364/AO.34.006201.
17. Portafaix T., Godin-Beekmann S., Payen G., de Mazière M., Langerock B., Fernandez S., Posny F., Cammas J.P., Metzger J.M., Bencherif H., Vigouroux C., Marquestaut N. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: Comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements // The 27th International Laser Radar Conference (ILRC 27). 2016. DOI: 10.13140/RG.2.1.3061.0403.
18. Baray J.-L., Courcoux Y., Keckhut P., Portafaix T., Tulet P., Cammas J.-P., Hauchecorne A., Godin-Beekmann S., De Mazière M., Hermans C., Desmet F., Sellegri K., Colomb A., Ramonet M., Sciare J., Vuillemin C., Hoareau C., Dionisi D., Duflot V., Vérèmes H., Porteneuve J., Gabarrot F., Gaudo T., Metzger J.-M., Payen G., Leclair de Bellevue J., Barthe C., Posny F., Ricaud P., Abchiche A., Delmas R. Maïdo observatory: A new high-altitude station facility at Reunion Island (21°S, 55°E) for long-term atmospheric remote sensing and in situ measurements // Atmos. Meas. Tech. 2013. V. 6. P. 2865–2877. DOI: 10.5194/amt-6-2865-2013.
19. Godin S., Bergeret V., Bekki S., David C., Mégie G. Study of the interannual ozone loss and the permeability of the Antarctic Polar Vortex from aerosol and ozone lidar measurements in Dumont d’Urville (66.4°, 140°S) // J. Geophys. Res. 2001. V. 106. P. 1311–1330. DOI: 10.1029/2000JD900459.
20. Gaudel A., Ancellet G., Godin-Beekmann S. Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44°N, 6.7°E // Atmos. Environ. 2015. V. 113. P. 78–89. DOI: 10.1016/j.atmosenv.2015.04.028.
21. Park Ch.B., Nakane H., Sugimoto N., Matsui Ich., Sasano Y., Fujinuma Y., Ikeuchi Iz., Kurokawa J.-Ich., Furuhashi N. Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station // Appl. Opt. 2006. V. 45. P. 3561–3576. DOI: 10.1364/AO.45.003561.
22. Nakazato M., Nagai T., Sakai T., Hirose Y. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide // Appl. Opt. 2007. V. 46. P. 2269–2279. DOI: 10.1364/AO.46.002269.
23. Veselovskii I., Barchunov B. Excimer-laser-based lidar for tropospheric ozone monitoring // Appl. Phys. 1999. V. 68. P. 1131–1137. DOI: 10.1364/AO.46.002269.
24. McDermid I.S., Godin S.M., Lindquist L.O. Ground-based laser DIAL system for long-term measurements of stratospheric ozone // Appl. Opt. 1990. V. 29. P. 3603–3612. DOI: 10.1364/AO.29.003603.
25. McDermid I.S., Beyerle G., Haner D.A., Leblanc T. Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility // Appl. Opt. 2002. V. 41. P. 7550–7555. DOI: 10.1364/AO.41.007550.
26. Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Lidarnyi kompleks dlya izmereniya vertikal'nogo raspredeleniya ozona v verkhnei troposfere – stratosfere // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 764–770. DOI: 10.15372/AOO20180911; Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Lidar complex for measurement of vertical ozone distribution in the upper troposphere – stratosphere // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 702–708.
27. Nevzorov A.A., Nevzorov A.V., Kravtsova N.S., Kharchenko O.V., Romanovskii Ya.O. Mobil'nyi lidar dlya zondirovaniya troposfernogo ozona // Optika atmosf. i okeana. 2023. V. 36, N 5. P. 410–416. DOI: 10.15372/AOO20230512; Nevzorov A.A., Nevzorov A.V., Kravtsova N.S., Kharchenko O.V., Romanovskii Ya.O. Mobile lidar for sensing tropospheric ozone // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 562–568.
28. Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Lidarnye issledovaniya izmenchivosti vertikal'nogo raspredeleniya ozona pod vliyaniem protsessov stratosferno-troposfernogo obmena v Dal'nevostochnom regione // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 788–795; Pavlov A.N., Stolyarchuk S.Yu., Shmirko K.A., Bukin O.A. Lidar measurements of variability of the vertical ozone distribution caused by the stratosphere–troposphere exchange in the Far East Region // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 126–134.
29. Fang X., Li T., Ban C., Wu Z., Li J., Li F., Cen Y., Tian B. A mobile differential absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet // Opt. Express. 2019. V. 27. P. 4126–4139. DOI: 10.1364/OE.27.004126.
30. Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Romanovskii O.A., Kharchenko O.V. Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere – lower stratosphere // Remote Sens. 2017. V. 9, N 5. P. 447. DOI: 10.3390/rs9050447.
31. Krueger A.J., Minzner R.A. Mid-latitude ozone model for the 1976 U.S. Standard Atmosphere // J. Geophys. Res. 1976. V. 81, N D24. P. 4477. DOI: 10.1029/JC081i024p04477.
32. Nevzorov A.A., Nevzorov A.V., Makeev A.P., Romanovskii O.A., Kharchenko O.V. Estimation of the spatial resolution influence on the retrieval error of ozone profiles at the Siberian lidar station // Proc. SPIE. 2021. V. 11916. P. 119163H. DOI: 10.1117/12.2603276.
33. Dolgii S.I., Nevzorov A.A., Nevzorov A.V., Romanovskii O.A., Kharchenko O.V. Comparison of ozone vertical profiles in the upper troposphere – stratosphere measured over Tomsk, Russia (56.5°N, 85.0°E) with DIAL, MLS, and IASI // Int. J. Remote Sens. 2020. V. 41, N 22. Р. 8590–8609. DOI: 10.1080/01431161.2020.1782506.