Vol. 37, issue 09, article # 2

Simonova G. V., Markelova A. N., Nagorsky P. M., Pustovalov K. N., Oglezneva M. V., Davydkina A. E. The influence of mesoscale convective systems on the isotopic composition of precipitation: the case of Tomsk city. // Optika Atmosfery i Okeana. 2024. V. 37. No. 09. P. 729–735. DOI: 10.15372/AOO20240902 [in Russian].
Copy the reference to clipboard
Abstract:

The isotopic composition of precipitation is a hydrological tracer of convective processes and is often used to reconstruct paleoclimate. Therefore, it is interesting to consider how the isotopic composition of precipitation changes during the passage of mesoscale convective systems (MCS). Variations in the isotopic composition of oxygen (δ18О) and hydrogen (δD) in precipitation during the passage of MCS over Tomsk in 2016–2021 were studied. It was found that d18О values varied from -14.98 to +0.03‰ with an average of -9.9 ± 3.2‰ and dD values varied from –99.2 to -16.71‰ with an average of -65.1 ± 22.3‰ in MCS precipitation. The relationship between δ18О and δD is described by the equation δD = 5.45δ18O – 11 (R2 = 0.62). The values of the regression coefficients show the predominant effect of evaporative fractionation on the formation of the isotopic composition of precipitation. Relatively high isotope ratios corresponded to disorganized convection, and lower isotope ratios characterized the isotopic composition as the MCS area increased. Based on the analysis of back air mass trajectories with the use of the indices of convective instability and satellite sounding and WWLLN network data, regions–sources of moisture for MCS precipitation were detected: the underlying surface and shallow water bodies of the steppe zone in the south of Western Siberia and Northern Kazakhstan. The results of the study can be useful for simulating convection in climate models, as well as for better understanding isotope variations in different paleoarchives for regions with convective activity.

Keywords:

precipitation, mesoscale convective system, hydrogen and oxygen stable isotopes, δD, δ18O

References:

1. Ferronskii V.I., Polyakov V.A. Izotopiya gidrosfery Zemli. M.: Nauchnyi mir, 2009. 632 p.
2. Masunaga H., L’Ecuyer N.S., Kummerow C.D. Variability in the characteristics of precipitation systems in the tropical. Part I: Spatial structure // J. Clim. 2005. V. 18, N 6. P. 823–840. DOI: 10.1175/JCLI-3304.1.
3. Houze R.A. Mesoscale convective systems // Rev. Geophys. 2004. V. 42. Р. RG4003. DOI: 10.1029/2004RG000150.
4. Thompson L.G., Mosley-Thompson E., Davis M.E., Lin P.-N., Henderson K., Mashiotta T.A. Tropical glacier and ice coreevidence of climate change on annual to millennial time scales // Clim. Change. 2003. V. 59. P. 137–155. DOI: 10.1023/A:1024472313775.
5. Risi C., Muller C., Vimeux F., Blossey P., Vedeau G., Dufaux C., Abramian S. What controls the mesoscale variations in water isotopic composition within tropical cyclones and squall lines? Cloud resolving model simulations in radiative-convective equilibrium // J. Adv. Model. Earth. Syst. 2023. V. 15, N 4. P. 1–19. DOI: 10.1029/2022MS003331.
6. Vimeux F., Tremoy G., Risi C., Gallaire R. A strong control of the South American SeeSaw on the intraseasonal variability of the isotopic composition of precipitation in the Bolivian Andes // Earth Planet. Sci. Lett. 2011. V. 307, N 1–2. P. 47–58. DOI: 10.1016/j.epsl.2011.04.031.
7. Tremoy G., Vimeux F., Soumana S., Souley I., Risi C., Cattani O., Oi M. Clustering mesoscale convective systems with laser-based water vapor d18O monitoring in Niamey (Niger) // J. Geophys. Res.: Atmos. 2014. V. 119, N 9. P. 5079–5103. DOI: 10.1002/2013JD020968.
8. Moerman J.W., Cobb K.M., Adkins J.F., Sodemann H., Clark B., Tuen A.A. Diunal to interannual rainfall d18O variations in northern Borneo driven by regional hydrology // Earth Planet. Sci. Lett. 2013. V. 369. P. 108–119. DOI: 10.1016/j.epsl.2013.03.04.
9. Nagorskii P.M., Zhukov D.F., Kartavykh M.S., Oglezneva M.V., Pustovalov K.N., Smirnov S.V. Struktura mezomasshtabnykh konvektivnykh sistem nad Zapadnoi Sibir'yu po dannym sputnikovykh nablyudenii // Meteorol. i gidrol. 2022. N 12. P. 45–55.
10. Pustovalov K.N., Nagorskiy P.M. Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds // J. Atmos. Sol.-Terr. Phys. 2018. V. 172. P. 33–39. DOI: 10.1002/2013JD020968.
11. Copernicus Climate Data Store. URL: https://cds.climate.copernicus.eu (last access: 16.03.2024).
12. WWLLN – the World Wide Lightning Location Network. A global network monitoring lightning activity over the entire Earth. URL: https://wwlln.net (last access: 16.03.2024).
13. Gidromettsentr Rossii. Karty fakticheskoi pogody – prizemnyi analiz i aerologiya. M., 2024. URL: https: //meteoinfo.ru/mapsynop (last access: 16.03.2024).
14. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. V. 96. Р. 2059–2077. DOI: 10.1029/1999JD900182.
15. Kruzhevskaya I.V., Zhukova V.A., Koshkova T.S., Pustovalov K.N., Chursin V.V. Mezomasshtabnye konvektivnye kompleksy Zapadnoi Sibiri: Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem (Perm', 16–17 september 2020 year). Perm': PGNIU, 2020. V. 1. P. 394–397.
16. Vel'tishchev N.F., Stepanenko V.M. Mezometeorologicheskie protsessy: ucheb. posobie. M.: MGU, 2006. 101 p.
17. Simonova G.V., Kalashnikova D.A., Markelova A.N., Bondarenko A.S., Davydkina A.E. Variatsii izotopnogo sostava kisloroda i vodoroda v atmosfernykh osadkakh v g. Tomske (2016–2020 years) // Optika atmosf. i okeana. 2023. V. 36, N 7. P. 595–601. DOI: 10.15372/AOO20230709.
18. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468.
19. Vaz de Oliveira A.C., da Silva Lima A. Spatial variability in the stable isotopes of modern precipitation in the northwest of Iberia // Isot. Environ. Health. Stud. 2010. V. 46, N 1. P. 13–26. DOI: 10.1080/10256010903388154.
20. Cole J.E., Rind D., Webb R.S., Jouzel J., Healy R. Climatic controls on interannual variability of precipitation δ18O: Simulated influence of temperature, precipitation amount, and vapour source region // J. Geophys. Res. 1999. V. 104. P. 14 223–14 236. DOI: 10.1029/1999JD900182.
21. Aggarwal P.K., Romatschke U., Araguas-Araguas L. Proportions of convective and stratiform precipitation revealed in water isotope ratios // Nat. Geosci. 2016. V. 9, N 8. P. 624–629. DOI: 10.1038/NGEO2739.
22. Bulygina O.N., Veselov V.M., Razuvaev V.N., Aleksandrova T.M. Opisanie massiva srochnykh dannykh ob osnovnykh meteorologicheskikh parametrakh na stantsiyakh Rossii. Svidetel'stvo o gosudarstvennoi registratsii bazy dannykh N 2014620549 ot 10 april 2014 year. URL: http://aisori-m.meteo.ru/ waisori/index.xhtml? (data obrashcheniya: 20.03.2024).
23. Bulygina O.N., Veselov V.M., Aleksandrova T.M., Korshunova N.N. Opisanie massiva dannykh po atmosfernym yavleniyam na meteorologicheskikh stantsiyakh Rossii. Svidetel'stvo o gosudarstvennoi registratsii bazy dannykh N 2015620081 ot 15 january 2015 year. URL: http://aisori-m.meteo.ru/ waisori/index.xhtml? (data obrashcheniya: 20.03.2024).