Vol. 37, issue 10, article # 7

Zuev V. V., Sidorovski E. A., Pavlinskii A. V. Dynamics of the stratospheric polar vortex in 2022/2023 by vortex delineation methods using geopotential and potential vorticity. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 857–860. DOI: 10.15372/AOO20241007 [in Russian].
Copy the reference to clipboard
Abstract:

Two methods of delineation of the stratospheric polar vortex were compared by the main characteristics of the vortex they provide – vortex area, average wind speed at the edge, mean temperature inside the vortex. Both methods use the ERA5 reanalysis data for isobaric and isentropic surfaces, one of them is based on the geopotential and another one – on the potential vorticity (PV). Geopotential method gives higher vortex area than the PV method: 1.3 times higher for Arctic and 1.14 for Antarctic. The estimates of the average wind speed at the edge are very similar: the wind speed by PV method is 5% higher than by geopotential for the Arctic, and 3% higher in the Antarctic. Mean temperature inside the vortex by PV method is 1% lower in both the Arctic and Antarctic. The largest difference in the estimates of vortex area in the Arctic was 25.52 million km2, which was reached on November 23, 2022 at the 600 K isentropic surface; and in the Antarctic it reached a value of 23.78 million km2 on December 14.2. The significant difference in area demonstrates the need for careful selection of the delineation method when studying polar vortices. The significant difference in area demonstrates the need for careful selection of the delineation method when studying polar vortices.022 at the 475 K surface. The differences of vortex area are increasing with height: from 4.23 million km2 at the 475 K surface to 10.24 million km2 at the 600 K surface in the Arctic, from 4.91 million km2 at the 475 K surface to 6.17 million km2 at the 600 K surface in the Antarctic. The significant difference in areas demonstrates the necessity for careful selection of the delineation method when studying polar vortices.

Keywords:

stratospheric polar vortex, vortex delineation method, geopotential, potential vorticity

References:

1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613. DOI: 10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2.
2. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Am. Meteorol. Soc. 2017. V. 98, N 1. P. 37–44. DOI: 10.1175/BAMS-D-15-00212.1.
3. Holton J.R., Haynes P.H., McIntyre M.E., Douglass A.R., Rood R.B., Pfister L. Stratosphere-troposphere exchange // Rev. Geophys. 1995. V. 33, N 4. P. 403–439. DOI: 10.1029/95RG02097.
4. Hsu J., Prather M.J. Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone? // Geophys. Res. Lett. 2014. V. 41, N 24. P. 9024–9032. DOI: 10.1002/2014GL061994.
5. Gray L.J., Brown M.J., Knight J., M.Andrews Lu H., O’Reilly C., Anstey J. Forecasting extreme stratospheric polar vortex events // Nat. Commun. 2020. V. 11, N 1. P. 4630. DOI: 10.1038/s41467-020-18299-7.
6. Lu Y., Tian W., Zhang J., Huang J., Zhang R., Wang T., Xu M. The impact of the stratospheric polar vortex shift on the Arctic Oscillation // J. Climate. 2021. V. 34, N 10. P. 4129–4143. DOI: 10.1175/JCLI-D-20-0536.1.
7. Nash E.R., Newman P.A., Rosenfield J.E., Schoeberl M.R. An objective determination of the polar vortex using Ertel's potential vorticity // J. Geophys. Res.: Atmos. 1996. V. 101, N D5. P. 9471–9478. DOI: 10.1029/96JD00066.
8. Zhang Y., Li J., Zhou L. The relationship between polar vortex and ozone depletion in the Antarctic stratosphere during the period 1979–2016 // Adv. Meteorol. 2017. V. 2017. DOI: 10.1155/2017/3078079.
9. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18, N 18. P. 13547–13579. DOI: 10.5194/acp-18-13547-2018.
10. Lecouffe A., Godin-Beekmann S., Pazmiño A., Hauche-corne A. Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 // Atmos. Chem. Phys. 2022. V. 22, N 6. P. 4187–4200. DOI: 10.5194/acp-22-4187-2022.
11. Holton J.R., Hakim G.J. An introduction to dynamic meteorology. 5th Edition. Cambridge: Academic press, 2013. 552 p. DOI: 10.1016/C2009-0-63394-8.
12. Zuev V.V., Savelieva E.S. Antarctic polar vortex dynamics depending on wind speed along the vortex edge //Pure Appl. Geophys. 2022. V. 179, N 6–7. P. 2609–2616. DOI: 10.1007/s00024-022-03054-4.
13. Zuev V.V., Savel'eva E.S., Pavlinskij A.V. Osobennosti oslableniya stratosfernogo polyarnogo vihrya, predshestvuyushchie ego razrusheniyu // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 81–83. DOI: 10.15372/AOO20220112; Zuev V.V., Savelieva E.S., Pavlinsky A.V. Features of stratospheric polar vortex weakening prior to breakdown // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 183–186.
14. Zuev V.V., Savelieva E.S. Stratospheric polar vortex dynamics according to the vortex delineation method // J. Earth Syst. Sci. 2023. V. 132, N 1. P. 39. DOI: 10.1117/12.2688279.
15. Lee S.H., Butler A.H. The 2018–2019 Arctic stratospheric polar vortex // Weather. 2020. V. 75, N 2. P. 52–57. DOI: 10.1002/wea.3643.
16. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.