Vol. 37, issue 10, article # 9

Shishko V. A., Tkachev I. V., Timofeev D. N., Kustova N. V., Konoshonkin A. V. Optical properties of atmospheric ice crystals of arbitrary shape with different number of facets for problems of laser sensing. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 868–873. DOI: 10.15372/AOO20241009 [in Russian].
Copy the reference to clipboard
Abstract:

Solving of the light scattering problem of atmospheric ice crystals is necessary for the interpretation of laser sensing data of atmosphere. This article presents the results of calculating light backscattering matrices for ice atmospheric crystals of arbitrary shape. The number of faces for these particles is 15, 20, and 40 and the size range is from 10 to 300 mm. Calculations were carried out within the physical optics approximation for the case of arbitrary spatial orientation of particles and single light scattering. The wavelengths of the incident light are 0.532 and 1.064 mm. According to the statistical analysis of crystals, their optical properties slightly differ. It is shown that the optical properties of an etalon particle taken from the IAO SB RAS data bank is satisfied the above distribution. Thus, the results confirm the validity of using the database for the case of a large set of particles with the number of faces from 15 to 40. The results are necessary for constructing algorithms for the interpretation of data of lidar sounding of cirrus clouds.

Keywords:

physical optics, light backscattering, atmospheric crystals, arbitrary shape

Figures:
References:

1. Sato K., Okamoto H. Global analysis of height-resolved ice particle categories from spaceborne lidar // Geophys. Res. Lett. 2023. V. 50. P. e2023GL105522. DOI: 10.1029/2023GL105522.
2. Fan C., Chen Y.-H., Chen X., Lin W. Yang P., Huang X. A refined understanding of the ice cloud longwave scattering effects in climate model // J. Adv. Model Earth Sy. 2023. V. 15. P. e2023MS003810. DOI: 10.1029/2023MS003810.
3. Kovadlo P., Shikhovtsev A., Lukin V., Kochugova E. Solar activity variations inducing effects of light scattering and refraction in the Earth’s atmosphere // J. Atmos. Sol.-Terr. Phys. 2018. V. 179. P. 468–471. DOI: 10.1016/j.jastp.2018.06.001.
4. Mitchell D.L., Mishra S., Lawson R.P. Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical Basis. London: IntechOpen, 2011. 290 p. DOI: 10.5772/24664.
5. Pincus R., Hubanks P.A., Platnick S., Meyer K., Holz R.E., Botambekov D., Wall C.J. Updated observations of clouds by MODIS for global model assessment // Earth Syst. Sci. Data. 2023. V. 15, N 6. P. 2483–2497. DOI: 10.5194/essd-15-2483-2023.
6. Yang P., Wei H., Huang H.-L., Baum B.A., Hu Y.X., Kattawar G.W., Mishchenko M.I., Fu Q. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region // Appl. Opt. 2005. V. 44. P. 5512–5523. DOI: 10.1364/AO.44.005512.
7. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79. P. 831–844. DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
8. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139. DOI: 10.1016/j.jqsrt.2014.02.029.
9. Heymsfield A.J., Bansemer A., Field P.R., Durden S.L., Stith J.L., Dye J.E., Hall W., Grainger C.A. Observations and parameterization of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in-situ observations in TRMM field campaigns // J. Atmos. Sci. 2002. V. 59. P. 3457–3491. DOI: 10.1175/1520-0469(2002)059%3C3457:OAPOPS%3E2.0.CO;2.
10. Heymsfield A.J. Properties of tropical and midlatitude ice cloud particle ensembles. Part 1: Medium mass diameters and terminal velocities // J. Atmos. Sci. 2003. V. 60. P. 2592–2611. DOI: 10.1175/1520-0469(2003)060%3C2573:POTAMI%3E2.0.CO;2.
11. Khademi F., Bayat A. Classification of aerosol types using AERONET version 3 data over Kuwait city. Atmospheric Environment // Atmos. Environ. 2021. V. 265. P. 118716. DOI: 10.1016/j.atmosenv.2021.118716.
12. Baars H., Ansmann A., Ohneiser K., Haarig M., Engelmann R., Althausen D., Hanssen I., Gausa M., Pietruczuk A., Szkop A., Stachlewska I., Wang D., Reichardt J., Skupin A., Mattis I., Trickl T., Vogelmann H., Guzmán F., Haefele A., Pappalardo G. The unprecedented 2017–2018 stratospheric smoke event: Decay phase and aerosol properties observed with the EARLINET // Atmos. Chem. Phys. 2019. V. 19. P. 15183–15198. DOI: 10.5194/acp-19-15183-2019.
13. Nishizawa T., Sugimoto N., Matsui I., Shimizu A., Higurashi A., Jin Y. The Asian Dust and Aerosol Lidar Observation Network (AD-NET) // EPJ Web of Conferences. 2016. V. 119. P. 19001. DOI: 10.1051/epjconf/201611919001.
14. Guerrero-Rascado J.L., Landulfo E., Antuña J.C., de Melo Jorge Barbosa H., Barja B., Bastidas Á.E., Bedoya A.E., da Costa R.F., Estevan R., Forno R., Gouveia D.A., Jiménez C., Larroza E.G., da Silva Lopes F. J., Montilla-Rosero E., de Arruda Moreira G., Nakaema W.M., Nisperuza D., Alegria D., Silva A. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation // J. Atmos. Sol-Terr. Phys. 2016. V. 138–139. P. 112–120. DOI: 10.1016/J.JASTP.2016.01.001.
15. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A., Liu Z., Hunt W.H., Young S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26, N 11. P. 2310–2323. DOI: 10.1175/2009JTECHA1281.1.
16. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission – science and system overview // Atmos. Meas. Tech. 2023. V. 16, N 15. P. 3581–3608. DOI: 10.5194/AMT-16-3581-2023.
17. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 p.
18. Volkovitskii O.A., Pavlova L.N., Petrushin A.G. Opticheskie svoistva kristallicheskikh oblakov. L.: Gidrometeoizdat, 1984. 197 p.
19. Noel V., Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations // J. Appl. Meteor. Climatol. 2005. V. 44. P. 653–664. DOI: 10.1175/JAM2223.1.
20. Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Issledovaniya orientatsii kristallicheskikh chastits v ledyanykh oblakakh skaniruyushchim lidarom // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 319–325. DOI: 10.15372/AOO20220412; Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Studies of the orientation of crystalline particles in ice clouds by a scanning lidar // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 509–516.
21. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Osobennosti v depolyarizatsionnom otnoshenii lidarnykh signalov dlya khaoticheski orientirovannykh ledyanykh kristallov peristykh oblakov // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 385–387.
22. Wiscombe W.J. Improved Mie scattering algorithms // Appl. Opt. 1980. V. 19. P. 1505–1509. DOI: 10.1364/AO.19.001505.
23. Zhang Y., Ding J., Yang P., Panetta R.L. Vector spherical wave function truncation in the invariant imbedding T-matrix method // Opt. Express. 2022. V. 30, N 17. P. 30020–30037. DOI: 10.1364/OE.459648.
24. Zhu Y., Liu C., Yurkin M. Reducing shape errors in the discrete dipole approximation using effective media // Opt. Express. 2023. V. 31. P. 43401–43415. DOI: 10.1364/OE.509479.
25. Macke A., Mueller J., Raschke E. Single scattering properties of atmospheric ice crystal // J. Atmos. Sci. 1996. V. 53, N 19. P. 2813–2825. DOI: 10.1175/1520-0469(1996)053%3C2813:SSPOAI%3E2.0.CO;2.
26. Borovoi A., Konoshonkin A., Kustova N. The physics optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189. DOI: 10.1016/j.jqsrt.2014.04.030.
27. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannykh matrits obratnogo rasseyaniya sveta na atmosfernykh ledyanykh kristallakh razmerami 10–100 mkm dlya interpretatsii dannykh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 199–206. DOI: 10.15372/AOO20210306.
28. Mu TS., Kargin B.A., Kablukova E.G. Chislennoe stokhasticheskoe modelirovanie rasseyaniya opticheskogo izlucheniya ledyanymi kristallami neregulyarnykh sluchainykh form // Vychisl. tekhnol. 2022. V. 27, N 2. P. 54–61.
29. Shishko V., Konoshonkin A., Kustova N., Timofeev D., Borovoi A. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27. P. 32984–32993. DOI: 10.1364/OE.27.032984.