Atmospheric aerosols have a significant impact on air quality, climate, and human health. The comparison of gaseous impurity and ionic composition monitoring data in the surface atmosphere over Antwerp and Beijing showed that the hygroscopicity level of dense haze particles over Beijing in winter is determined by the depth of heterogeneous reactions of sulfate and nitrate formation. The paper discusses the dynamics and mechanisms of these non-photochemical processes, as well as the features of their coupling in a haze-polluted atmosphere. Their rapid occurrence in particles in combination with the absorption of water vapor from the air causes abnormally high mass concentrations of aerosol and their variability during the haze period over Beijing. The results are necessary for forecasting the occurrence of dense hazes, as well as for constructing models of transfer of gas and aerosol microimpurities in the atmosphere.
aerosol haze, hygroscopicity, sulfates, nitrate, degenerate-branched mode, Mn/Fe ions
1. Andreae M.O., Jones C.D., Cox P.M. Strong present-day cooling implies a hot future // Nature. 2005. V. 435, N 7046. P. 1187–1190. DOI: 10.1038/nature03671.
2. Wang Y., Zhang Q., Jiang J., Zhou W., Wang B., He K., Duan F., Zhang Q., Philip S., Xie Y. Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models // J. Geophys. Res.: Atmos. 2014. V. 119, N 17. P. 10425–10440. DOI: 10.1002/2013JD021426.
3. Liu M., Song Y., Zhou T., Xu Zh., Yan C., Zheng M., Wu Zh., Hu M., Wu Y., Zhu T. Fine particle pH during severe haze episodes in northern China // Geophys. Res. Lett. 2017. V. 44, N 10. P. 5213–5221. DOI: 10.1002/2017GL073210.
4. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117, N 3. P. 1354–1359. DOI: 10.1073/pnas.1916401117.
5. Liu P., Ye C., Xue Ch,, Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20, N 7. P. 4153–4165. DOI: 10.5194/acp-20-4153-2020.
6. Wang Y., Zhang F., Li Z., Tan H., Xu H., Ren J., Zhao J., Du W., Sun Y. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing // Atmos. Chem. Phys. 2017. V. 17, N 8. P. 5239–5251. DOI: 10.5194/acp-17-5239-2017.
7. Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skoroxod A.I. Vliyanie meteorologicheskix uslovii i dal'nego perenosa vozdushnyx mass na sostav prizemnogo aerozolya v Moskve v zimnie sezony // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 436–446. DOI: 10.15372/AOO20220602; Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. The influence of meteorological conditions and long-range air mass transport on the winter near-surface aerosol composition in Moscow // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 758–768.
8. Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. Ekstremal'nye aerozol'nye zagryazneniya atmosfery v zimnii period v Akademgorodke g. Tomska // Optika atmosf. i okeana. 2023. V. 36, N 9. P. 711–717. DOI: 10.15372/AOO20230902; Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. Extreme events of aerosol pollution of the atmosphere in winter in Tomsk Akademgorodok // Atmos. Ocean. Opt. 2023. V. 36, N S1. P. S65–S73.
9. Zheng G.J., Duan F.K., Su H., Ma Y.L., Cheng Y., Zheng B., Huang T., Kimoto T., Chang D., Pöshl U., Cheng Y.F., He K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15, N 6. P. 2969–2983. DOI: 10.5194/acp-15-2969-2015.
10. Herrmann H., Ervens B., Jacobi H.-W., Wolke R., Nowacki P., Zellner R.J. CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36, N 3. P. 231–284. DOI: 10.1023/A:1006318622743.
11. Wang G.H., Zhang R.Y., Gomes M.E., Song Y., Zhou L., Cao J., Hu J., Tang G., Chen Zh., Li Z., Hu Z., Peng C., Lian C., Chen Y., Pan Y., Zhang Y., Sun Y., Li W., Zhu T., Tian H., Ge M. Persistent sulfate formation from London fog to Chinese haze // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113, N 48. P. 13630–13635. DOI: 10.1002/2013JD021426.
12. Ibusuki T., Takeuchi K. Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous-solutions at environmental reaction condition // Atmos. Environ. 1987. V. 21, N 7. P. 1555–1560. DOI: 10.1016/0004-6981(87)90317-9.
13. Yermakov A.N., Aloyan A.E., Arutyunyan V.O., Pronchev G.B. O novom istochnike sul'fatov v atmosfere // Optika atmosf. i okeana. 2023. V. 36, N 12. P. 975–981. DOI: 10.15372/AOO20231203; Yermakov A.N., Aloyan A.E., Arutyunyan V.O., Pronchev G.B. A new source of sulfates in the atmosphere // Atmos. Ocean. Opt. 2024. V. 37, N 2. P. 166–173. DOI: 10.1134/S1024856024700362.
14. Pronchev G.B., Yermakov A.N. On the mechanism of nitrate formation in atmospheric haze particles // Russ.J. Phys. Chem. B. 2024. V. 18, N 5. P. 1422–1429. DOI: 10.1134/S1990793124701148.
15. Grieken R.V. Optimization and environmental application of TW-EPMA for single particle analysis. Antwerpen: Antwerpen University, 2005. 44 р.
16. Fountoukis C., Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42-–NO3–Cl-–H2O aerosols // Atmos. Chem. Phys. 2007. V. 7, N 17. P. 4639–4659. DOI: 10.5194/acp-7-4639-2007.
17. Yermakov A.N., Aloyan A.E., Arutyunyan V.O. Acidity of aerosol particles in the rural atmosphere // Russ. Meteorol. Hydrol. 2021. V. 46, N 11. P. 762–767. DOI: 10.3103/S1068373921110054.
18. Swietlicki E., Hansson H.C., Hameri K.H.-C., Sveningsson B., Massling A., McFiggans G., McMurry P.H., Petaj T., Tunved P., Gysel M., Topping D., Weingartner E., Baltensperger U., Rissler J., Wiedensohler A., Kulmala M. Hydroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments – a review // Tellus B: Chemical and Physical Meteorology. 2008. V. 60, N 3. P. 432–469. DOI: 10.1111/j.1600-0889.2008. 00350.x.
19. Petters M.D., Kreidenweis S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity // Atmos. Chem. Phys. 2007. V. 7, N 8. P. 1961–1971. DOI: 10.5194/acp-7-1961-2007.
20. He P., Alexander B., Geng L., Chi X., Shidong C., Fan H., Zhan H., Kang H., Zheng G., Cheng Y., Su H., Liu C., Xie Zh. Isotopic constraints on heterogeneous sulfate production in Beijing haze // Atmos. Chem. Phys. 2018. V. 18, N 8. P. 5515–5528. DOI: 10.5194/acp-18-5515-2018.
21. Martin L.R., Hill M.W. The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV) // Atmos. Environ. 1987. V. 21, N 10. P. 2267–2270. DOI: 10.1016/0004-6981(87)90361-1.
22. Baranova R.B., Bugaenko L.T., Ivanina I.N., Kostenko N.N., Starodubtsev G.A. Mekhanizm i osnovnye zakonomernosti radiatsionno-kataliticheskogo okisleniya dvuokisi sery v sernokislom rastvore // Khim. vys. energ. 1982. V. 16, N 3. P. 234–239.
23. Alexander B., Park R.J., Jacob D.J., Gong S. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget // J. Geophys. Res.: Atmos. 2009. V. 114, N D2. DOI: 10.1029/2008JD010486.
24. Mc-Cabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. Isotopic constraints on non-photochemical sulfate production in the Arctic winter // Geophys. Res. Lett. 2006. V. 33, N 5. P. L05810. DOI: 10.1029/2005GL025164.
25. Brandt Ch., van Eldik R. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms // Chem. Rev. 1995. V. 95, N 1. P. 119–190. DOI: 10.1021/cr00033a006.
26. Wang H., Lu K., Chen X., Zhu Q., Chen Q., Guo S., Jiang M., Li X., Shang D., Tan Zh., Wu Y., Wu Z., Zou Q., Zheng Y., Zeng L., Zhu T., Hu M., Zhang Y. High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation // Environ. Sci. Technol. Lett. 2017. V. 4(10). P. 416–420. DOI: 10.1021/acs.estlett.7b00341.
27. Wang H. The chemistry of nitrate radical (NO3) and denitrogen pentoxide (N2O5) in Beijing. Singapore: Springer, 2021. 116 p.
28. Sun Y., Jiang Q., Wang Z., Fu P., Li J., Yang T., Yin Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013 // J. Geophys. Res. 2014. V. 119, N 7. P. 4380–4398. DOI: 10.1002/2014JD021641.
29. Sander S.P., Finlayson-Pitts B.J., Friedl R.R., Golden D.M., Huie R., Keller-Rudel H., Kolb S.E., Kurylo M.J., Molina M.J., Moortgat G.K., Orkin V.L., Ravishankara A.R., Wine P.H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15. JPL Publication 06-2. Jet Propulsion Laboratory. Pasadena. CA. 2006.