Vol. 37, issue 12, article # 8

Smalikho I. N., Banakh V. A., Falits A. V., Sherstobitov A. M. Lidar studies of wave structures and wind turbulence in the stable atmospheric boundary layer. // Optika Atmosfery i Okeana. 2024. V. 37. No. 12. P. 1040–1052. DOI: 10.15372/AOO20241208 [in Russian].
Copy the reference to clipboard
Abstract:

The study of internal gravity waves (IGWs) generated in the atmospheric boundary layer (ABL) under stable temperature stratification and the mechanisms of interaction of IGW with wind turbulence are important for understanding the dynamic processes in the atmosphere and improving the algorithms of ABL numerical modeling and weather forecasts. This work is devoted to the study of wave structures and turbulence in stable ABL using the data of our experiments conducted in 2023. In these experiments, two pulsed coherent Doppler lidars (PCDL) horizontally spaced 3250 m apart were simultaneously used. The analysis of the experimental results has shown that from the measurements of two PCDLs it is possible to determine the time shift of the moments of passage of the leading edge of an atmospheric wave through the lidar locations, which is used to determine the propagation velocity of the atmospheric wave. For the first time in our lidar experiments, the case of atmospheric wave propagation in the layer at altitudes from 200 m to 1 km with a maximum amplitude of quasi-harmonic oscillations of the vertical component of the wind speed vector of about 4 m/s (at an altitude of 400 m) was revealed. It is established that due to the transfer of energy from an atmospheric wave to small-scale wind fluctuations, it is possible to increase the turbulent energy dissipation rate by four orders of magnitude in just a few tens of minutes.

Keywords:

coherent Doppler lidar, wind turbulence, internal gravity wave, spectral density, atmospheric boundary layer

Figures:
References:

1. Finnigan J.J., Einaudi F., Fua D. The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer // J. Atmos. Sci. 1984. V. 41. P. 2409–2436. DOI: 10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2.
2. Banakh V.A., Smalikho I.N. The impact of internal gravity waves on the spectra of turbulent fluctuations of vertical wind velocity in the stable atmospheric boundary layer // Remote Sens. 2023. V. 15. P. 2894. DOI: 10.3390/rs15112894.
3. Zilitinkevich S.S. Atmosfernaya turbulentnost' i planetarnye pogranichnye sloi. M.: Fizmatlit, 2013. 246 p.
4. Kurbatskii A.F., Kurbatskaya L.I. O turbulentnom chisle Prandtlya v ustoichivo stratifitsirovannom atmosfernom pogranichnom sloe // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 2. P. 187–196.
5. Kurbatskaya L.I. Eddy Mixing, Gravity Waves and the intermittent turbulence in atmospheric flows under stronger stratification // AIP Conf. Proc. 2021. V. 2351. P. 040008. DOI: 10.1063/5.0052012.
6. Kurbatskaya L.I. Vikhrevye koeffitsienty perenosa impul'sa i tepla v pogranichnom sloe atmosfery: Chislennoe issledovanie // Interekspo GEO-Sibir'. 2020. V. 4, N 1. P. 74–82. DOI: 10.33764/2618-981Х-2020-4-1-74-82.
7. Sun J., Nappo C.J., Mahrt L., Beluši´c D., Grisogono B., Stauffer D.R., Pulido M., Staquet C., Jiang Q., Pouquet A., Yagüe C., Galperin B., Smith R.B., Finnigan J.J., Mayor S.D., Svensson G., Grachev A.A., Neff W.D. Review of wave turbulence interactions in the stable atmospheric boundary layer // Rev. Geophys. 2015. V. 53. P. 956–993. DOI: 10.1002/2015RG000487.
8. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 46, N 11. P. 1953–1962. DOI: 10.1364/AO.46. 001953.
9. Parmentier R., Boquet M., Cariou J.P., Sauvage L. WindcubeTM pulsed lidar compact wind profiler: Overview on more than two years of comparison with calibrated sensors at different location // Proc. the 15th Coherent Laser Radar Conference, Toulouse, France. 2009. P. 267–270.
10. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250. DOI: 10.1175/2008JTECHA1128.1.
11. Liu J., Chen W., Zhu X., Zhu X., Zhang X., Liu Yu., Shi W. Development of 1.5 mm all-fiber pulsed coherent Doppler wind lidar // Proc. the 18th Coherent Laser Radar Conference, Boulder, USA. 2016.
12. Boquet M., Royer P., Pureur V., Cariou J.P., Smith M. Long range off-shore wind assessment by high power scanning Lidars // Proc. the 18th Coherent Laser Radar Conference, Boulder, USA. 2016.
13. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-range wind scanner system // Remote Sens. 2016. V. 8. P. 896. DOI: 10.3390/rs8110896.
14. Wu S., Liu B., Liu J., Zhai X., Feng C., Wang G., Zhang H., Yin J., Wang X., Li R., Gallacher D. Wind turbine wake visualization and characteristics analysis by Doppler lidar // Opt. Express. 2016. V. 24, N. 10. P. A762. DOI: 10.1364/OE.24.00A762.
15. Li X., Xu X., Zhang Z., Liu J., Bai X. Izmerenie polya atmosfernogo vetra s pomoshch'yu polnost'yu volokonnogo lidara s dlinoi volny generatsii 1,5 μm // Pis'ma v ZhTF. 2023. V. 49, iss. 16. P. 3–7.
16. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208. DOI: 10.5194/amt-2017-140.
17. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13. P. 2071. DOI: 10.3390/rs13112071.
18. Smalikho I.N., Banakh V.A., Razenkov I.A., Sukharev A.A., Falits A.V., Sherstobitov A.M Sravnenie rezul'tatov sovmestnykh izmerenii skorosti vetra kogerentnymi doplerovskimi lidarami Stream Line i LRV // Optika atmosf. i okeana. 2022. V. 35, N 10. P. 826–835. DOI: 10.15372/AOO20221005; Smalikho I.N., Banakh V.A., Razenkov I.A., Sukharev A.A., Falits A.V., Sherstobitov A.M. Comparison of results of joint wind velocity measurements with the Stream Line and WPL coherent Doppler lidars // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S79–S91.
19. Frehlich R.G., Yadlowsky M.J. Performance of mean-requency estimators for Doppler radar and lidar // J. Atmos. Ocean. Technol. 1994. V. 11, N 5. P. 1217–1230. DOI: 10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.
20. Frehlich R.G., Hannon S.M., Henderson S.W. Performance of a 2-mm coherent Doppler lidar for wind measurements // J. Atmos. Ocean. Technol. 1994. V. 11, N 6. P. 1517–1528. DOI: 10.1175/1520-0426(1994)011<1517:POACDL>2.0.CO;2.
21. Frehlich R.G., Cornman L.B. Estimating spatial velocity statistics with coherent Doppler lidar // J. Atmos. Ocean. Technol. 2002. V. 19, N 3. P. 355–366. DOI: 10.1175/1520-0426-19.3.355.
22. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
23. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoi atmosfere. L.: Gidrometeoizdat, 1976. 288 p.
24. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.