Vol. 39, issue 01, article # 6

Antokhina O. Yu., Аntokhin P. N., Zorkal’tseva O. S., Gochakov A. V., Artamonov M. F., Bobrovnikov S. M., Zharkov V. I. Dynamics of the stratospheric polar vortex in winter 2024/2025: the role of wave processes and connection with tropospheric circulation. // Optika Atmosfery i Okeana. 2026. V. 39. No. 01. P. 42–52. DOI: 10.15372/AOO20260106 [in Russian].
Copy the reference to clipboard
Abstract:

Winter 2024/2025 was characterized by anomalous stability of the stratospheric polar vortex (SPV), resulting from a combination of weak propagation of wave activity from the troposphere and strong zonal winds that created a barrier to vertical wave transport. Lidar measurements near Tomsk in February showed record-low temperatures (-85 °C) at altitudes of 15–20 km and the formation of polar stratospheric clouds, confirming the uniqueness of stratospheric conditions. In November–January, weak Rossby wave breaking processes and predominant zonal circulation over Eurasia were observed, while the final weakening of the SPV in early March was accompanied by a sharp restructuring of stratospheric circulation. These results are important for understanding the mechanisms of SPV stability and their influence on atmospheric dynamics.
 

Keywords:

stratosphere, troposphere, polar vortex, sudden stratospheric warming, wave propagation, temperature anomaly, polar stratospheric clouds

Figures:
References:

1. Holton J.R. Introduction to Dynamic Meteorology. 4th Edition. Amsterdam: Elsevier, 2004. 535 p.
2. Charney J.G., Drazin P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. 1961. V. 66, N 1. P. 83–109. DOI: 10.1029/JZ066i001p00083.
3. McIntyre M.E., Palmer T.N. Breaking planetary waves in the stratosphere // Nature. 1983. V. 305, N 5935. P. 593–600. DOI: 10.1038/305593a0.
4. Krupchatnikov V.N., Borovko I.V. Rossby wave breaking and blocking events associated with some atmospheric circulation regimes in the Northern Hemisphere based on a climate system model (PlaSim-ICMMG-1.0) // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 611. P. 012015. DOI: 10.1088/1755-1315/611/1/012015.
5. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59, N 1. P. e2020RG000708. DOI: 10.1029/2020RG000708.
6. Cullens C.Y., Thurairajah B. Gravity wave variations and contributions to stratospheric sudden warming using long-term ERA5 model output // J. Atmos. Sol.-Terr. Phys. Pergamon. 2021. V. 219. P. 105632. DOI: 10.1016/j.jastp.2021.105632.
7. Okui H., Koshin D., Watanabe S., Sato K. Roles of gravity waves in preconditioning of a stratospheric sudden warming // J. Geophys. Res.: Atmos. 2024. V. 129, N 10. DOI: 10.1029/2023JD039881.
8. Baldwin M.P., Dunkerton T.J. Stratospheric harbingers of anomalous weather regimes // Science. 2001. V. 294, N 5542. P. 581–584. DOI: 10.1126/science.1063315.
9. Kretschmer M., Coumou D., Agel L., Barlow M., Tziperman E., Cohen J. More-persistent weak stratospheric polar vortex states linked to cold extremes // Bull. Am. Meteorol. Soc. 2018. V. 99, N 1. P. 49–60. DOI: 10.1175/bams-d-16-0259.1.
10. Zhang C., Zhang J., Maycock A.C., Tian W. Distinct tropospheric anomalies during sudden stratospheric warming events accompanied by strong and weak Ural Ridge // Clim. Atmos. Sci. 2024. V. 7, N 1. DOI: 10.1038/s41612-024-00826-8.
11. Perlwitz J., Harnik N. Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection // J. Climate. 2003. V. 16. P. 3011–3026. DOI: 10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.
12. Sun L., Robinson W.A., Chen G. The predictability of stratospheric warming events: More from the troposphere or the stratosphere? // J. Atmos. Sci. 2012. V. 69, N 2. P. 768–783. DOI: 10.1175/jas-d-11-0144.1.
13. Zhang P., Wu Y., Simpson I.R., Smith K.L., Zhang X., De B., Callaghan P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea ice loss // Sci. Adv. 2018. V. 4, N 7. DOI: 10.1126/sciadv.aat6025.
14. Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Dolgovremennaya izmenchivost' parametrov vnezapnykh stratosfernykh poteplenij po dannym reanaliza ERA5 // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 200–208. DOI: 10.15372/AOO20230306; Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 370–378.
15. Goncharenko L.P., Harvey V.L., Greer K.R., Zhang S., Coster A.J., Paxton L.J. Impact of September 2019 Antarctic sudden stratospheric warming on mid-latitude ionosphere and thermosphere over North America and Europe // Geophys. Res. Lett. 2021. V. 48, N 15. DOI: 10.1029/2021gl094517.
16. Wang F., Tang J., Shan X., Zhang H., Li N., Zhang Y., Jin R., Xu T. The ionospheric response during the 2013 stratospheric sudden warming over the East Asia region // Adv. Space Res. 2024. V. 74, N 10. P. 4918–4929. DOI: 10.1016/j.asr.2024.07.063.
17. Zorkaltseva O.V., Saunkin A.V., Vasilyev R.V., Gavrilyeva G.A., Artamonov M.P., Antokhina O.Yu. . Effects of sudden stratospheric warmings on airglow emissions layers over Siberia // Adv. Space Res. 2025. V. 75, N 7. P. 5603–5614. DOI: 10.1016/j.asr.2025.01.054.
18. Zhang Y., Yi Y., Ren X., Liu Y. Statistical characteristics and long-term variations of major sudden stratospheric warming events // J. Meteorol. Res. 2021. V. 35, N 3. P. 416–427. DOI: 10.1007/s13351-021-0166-3.
19. Zorkal'tseva O.S., Antokhina O.Yг., Gochakov A.V., Artamonov M.F. Evolyutsiya stratosfernogo polyarnogo vikhrya na primere zimnikh periodov 2022–2024 years // Solnechno-zemnaya fizika. 2025 V. 11, N 2. DOI: 10.12737/szf-822025ХХ.
20. Vargin P., Smyshlyaev S., Guryanov V., Chubarova N., Ionov D., Bankova T., Ivanova N., Solomatnikova A. A study of the low-ozone episode over Scandinavia and Northwestern Russia in March 2025 // Atmosphere. 2025. V. 16, N 9. P. 1033. DOI: 10.3390/atmos16091033.
21. An early but interesting end to the 2024–2025 polar vortex season. URL: https://www.climate.gov/news-features/blogs/polar-vortex (last access: 17.08.2025).
22. Hersbach H., Bell B., Berrisford P., Hirahara Sh., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
23. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L. The NCEP/NCAR 40-year Reanalysis Project // Bull. Am. Meteorol. Soc. 1996. V. 77, N 3. P. 437–471. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
24. Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Oprokidyvanie voln Russia v stratosfere. Part I. Klimatologiya i dolgovremennaya izmenchivost' // Optika atmosf. i okeana. 2024. V. 37, N 5. P. 415–422. DOI: 10.15372/AOO20240509; Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Rossby wave breaking in the stratosphere: Part I – Climatology and long-term variability // Atmos. Ocean. Opt. 2024. V. 37, N 4. P. 514–521.
25. Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Oprokidyvanie voln Russia v stratosfere. Part II. Usloviya vozniknoveniya vnezapnykh stratosfernykh poteplenij // Optika atmosf. i okeana. 2025. V. 38, N 5. P. 358–366. DOI: 10.15372/AOO20250505; Antokhina O.Yu., Gochakov A.V., Zorkal’tseva O.S., Antokhin P.N., Krupchatnikov V.N., Artamonov M.F. Breaking of Rossby waves in the stratosphere: Part II – Factors leading to sudden stratospheric warmings // Atmos. Ocean. Opt. 2025. V. 38, N 5. P. 564–575.
26. Plumb R.A. On the three-dimensional propagation of stationary waves // J. Atmos. Sci. 1985. V. 42, N 3. P. 217–229. DOI: 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.
27. Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Primenenie kombinirovannogo metoda fotoregistratsii v lidarnykh izmereniyakh temperatury atmosfery na glavnom zerkale Sibirskoj lidarnoj stantsii // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 839–845. DOI: 10.15372/AOO20231008; Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Combined lidar signal registration technique for atmospheric temperature measurements with the primary mirror of the Siberian Lidar Station // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 24–30.
28. Balugin N.V., Marichev V.N., Yushkov V.A., Fomin B.A., Bochkovskiy D.A. Aerozol'noe zondirovanie troposfery i stratosfery s pomoshch'yu lidarnykh i aerologicheskikh tekhnologij // Optika atmosf. i okeana. 2024. V. 37, N 2. P. 99–104. DOI: 10.15372/AOO20240201; Balugin N.V., Marichev V.N., Yushkov V.A., Fomin B.A., Bochkovskiy D.A. Aerosol sounding of the troposphere and stratosphere by lidar and aerological technologies // Atmos. Ocean. Opt. 2024. V. 37, N 3. P. 338–342.
29. Cheremisin A.A., Marichev V.N., Novikov P.V. Perenos polyarnykh stratosfernykh oblakov iz Arktiki k Tomsku v yanvare 2010 year // Optika atmosf. i okeana. 2013. V. 26, N 2. P. 93–99. DOI: 10.5194/acp-17-3067-2017; Cheremisin A.A., Marichev V.N., Novikov P.V. Transport of polar stratospheric clouds from the Arctic to Tomsk in January 2010 // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 492–498.
30. Marichev V.N., Bochkovskiy D.A. Lidarnye issledovaniya termicheskogo rejima stratosfery nad Tomskom za 2012–2015 years // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 28–37. DOI: 10.15372/AOO20180105.
31. Antokhina O.Yu., Bobrovnikov S.M., Zharkov V.I., Zorkaltseva O.S., Trifonov D.A. Osobennosti vertikal'nogo raspredeleniya temperatury nad g. Tomskom vo vremya vnezapnogo stratosfernogo potepleniya zimoj 2023 year po dannym Sibirskoj lidarnoj stantsii // Optika atmosf. i okeana. 2024. V. 37, N 11. P. 947–953. DOI: 10.15372/AOO20241107; Antokhina O.Yu., Bobrovnikov S.M., Zharkov V.I., Zorkaltseva O.S., Trifonov D.A. Features of the vertical distribution of air temperature over Tomsk during sudden stratospheric warming in winter 2023 according to data from the Siberian Lidar Station // Atmos. Ocean. Opt. 2025. V. 38, N 1. P. 59–64.
32. Агеева В.Ю., Груздев А.Н., Елохов А.С., Мохов И.И., Зуева Н.Е. Vnezapnye stratosfernye potepleniya: statisticheskie kharakteristiki i vliyanie na obshchee soderjanie NO2 i O3 // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 5. P. 545–555. DOI: 10.7868/S0003351517050014.
33. Butler A.H., Domeisen D.I.V. The wave geometry of final stratospheric warming events // Weather Clim. Dyn. 2021. V. 2, N 2. P. 453–474. DOI: 10.5194/wcd-2-453-2021-2021.
34. Stratosphere – Troposphere Monitoring. URL: https://www.cpc.ncep.noaa.gov/products/ stratosphere/strat-trop/ (last access: 17.08.2025).
35. WACCM Download Subset. URL: https://www.acom.ucar.edu/waccm/download (last access: 01.05.2025).
36. Ugolnikov O.S. Winter noctilucent clouds following sudden stratospheric warming: First observations // J. Atmos. Sol.-Terr. Phys. 2025. P. 106507–106507. DOI: 10.1016/j.jastp.2025.106507\z.
37. Zhang Z., Cui H., Qiao F., Chen B., Song Y., Sun X., Gao C. Effect of the blocking High-East Asian trough on three extreme cold events in Eastern Asia // Adv. Atmos. Sci. 2024. V. 42. P. 892–903. DOI: 10.1007/s00376-024-4029-6.
38. Yang Z., Huang W., Chen R., Lin D., Wang B., Ma W. Ural blocking and the amplitude of wintertime cold surges over North China detected by a cooling algorithm // Atmosphere. 2024. V. 15, N 6. P. 623. DOI: 10.3390/atmos15060623.
39. Li Z., Dai G., Mu M. Effects of stratospheric warming on Ural blocking events in winter // J. Geophys. Res.: Atmos. 2024. V. 129, N 2. DOI: 10.1029/2023JD039672.
40. Luo D., Xiao Y., Yao Y., Dai A., Simmonds I., Franzke C.L.E. Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification // J. Clim. 2016. V. 29, N 11. P. 3925–3947. DOI: 10.1175/jcli-d-15-0611.1.
41. Murto S., Caballero R., Svensson G., Papritz L. Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic // Weather Clim. Dyn. 2022. V. 3, N 1. P. 21–44. DOI: 10.5194/wcd-3-21-2022.
42. Labitzke K. Interannual variability of the winter stratosphere in the Northern Hemisphere // Mon. Weather Rev. Am. Meteorol. Soc. 1977. V. 105, N 6. P. 762–770. DOI: 10.1175/1520-0493(1977)105<0762:IVOTWS>2.0.CO;2.
43. Vargin P.N., Kostrykin S.V., Rakushina E.V., Volodin E.M., Pogorel'tsev A.I. Issledovanie izmenchivosti dat vesennikh perestroek tsirkulyatsii stratosfery i ob"ema polyarnykh stratosfernykh oblakov v Arktike po dannym modelirovaniya i reanaliza // Izv. RAN. Fiz. atmosf. i okeana. 2020. V. 56, N 5. P. 1–13. DOI: 10.31857/S0002351520050119.
44. Muller H.G., Whitehurst G.A., O’Neill A. Stratospheric warmings and their effects on the winds in the upper atmosphere during the winter of MAP/WINE 1983–1984 // J. Atmos. Sol.-Terr. Phys. 1985. V. 47, N 11. P. 1143–1147. DOI: 10.1016/0021-9169(85)90032-7.
45. Hansen G., Chipperfield M.P. Ozone depletion at the edge of the Arctic polar vortex 1996/1997 // J. Geophys. Res.: Atmos. 1999. V. 104, N D1. P. 1837–1845. DOI: 10.1029/1998jd100021.
46. Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. 2022. V. 13, N 10. P. 1550. DOI: 10.3390/atmos13101550.
47. Sumerova K.A., Vargin P.N., Lukyanov A.N., Khan V.M. Analysis of tropospheric and stratospheric circulation conditions that contributed to the formation of cold waves in the northwest and center of European Russia in December 2021 // Russ. Meteorol. Hydrol. 2023. V. 48, N 11. P. 931–945. DOI: 10.3103/s106837392311002x.
48. Tsvetkova N.D., Vargin P.N., Luk'yanov A.N., Kiryushov B.M., Yushkov V.A., Khattatov V.U. Issledovanie khimicheskogo razrusheniya ozona i dinamicheskikh protsessov v stratosfere Arktiki zimoj 2019–20 year // Meteorol. i gidrol. 2021. N 9. P. 70–83. DOI: 10.5194/acp-20-5349-2020.
49. Wohltmann I., Gathen P., Lehmann R., Deckelmann H., Manney G.L., Davies J., Tarasick D., Jepsen N., Kivi R., Lyall N., Rex M. Chemical evolution of the exceptional arctic stratospheric winter 2019/2020 compared to previous Arctic and Antarctic winters // J. Geophys. Res.: Atmos. 2021. V. 126, N 18. DOI: 10.1029/2020jd034356.
50. Lawrence Z.D., Perlwitz J., Butler A.H., Manney G.L., Newman P.A., Lee S.H., Nash E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss // J. Geophys. Res.: Atmos. 2020. V. 125, N 22. DOI: 10.1029/2020jd033271.
51. Domeisen D.I., Garfinkel C.I., Butler A.H. The teleconnection of El Nino Southern Oscillation to the stratosphere. // Rev. Geophys. 2019. V. 57. P. 5–47. DOI: 10.1029/2018RG000596.
52. Holton J.M., Tan H.-C. The Quasi-Biennial Oscillation in the Northern Hemisphere lower stratosphere // J. Met. Soc. Jpn. Ser. II. 1982. V. 60, N 1. P. 140–148. DOI: 10.2151/jmsj1965.60.1_140.
53. Yeh S.-W., Cai W., Min S.-K., McPhaden M.J., Dommenget D., Dewitte B., Collins M., Ashok K., An S.-I., Yim B.-Y., Kug J.-S. ENSO atmospheric teleconnections and their response to greenhouse gas forcing // Rev. Geophys. 2018. V. 56, N 1. P. 185–206. DOI: 10.1002/2017RG000568.
54. Yeh S.-W., Yi D.-W., Sung M.-K., Kim Y. H. An eastward shift of the North Pacific Oscillation after the mid-1990s and its relationship with ENSO // Geophys. Res. Lett. 2018. V. 45, N 13. P. 6654–6660. DOI: 10.1029/2018GL078671.
55. Zhu Y., Wang T., Wang H. Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s // Sci. Bull. 2016. V. 61, N 5. P. 416–424. DOI: 10.1007/s11434-016-1012-3.