Atmospheric electricity is the totality of electrical phenomena occurring in the atmosphere, including clouds and precipitation, and forming the global electrical circuit. Studying the functioning of this circuit, particularly the factors that determine its local variability, is a pressing and important scientific problem, especially in the context of the current climate change. Based on atmospheric electrical, spectrophotometric, and meteorological observations Tomsk from 2006 to 2020, we analize the variability of the main characteristic of atmospheric electricity, that is, the surface electric field potential gradient and the spectral transmittance of long-wave UV radiation by clouds depending on their form. The analysis revealed a statistically significant positive relationship between variations in the potential gradient and the transmittance of radiation at a wavelength of 380 nm for almost all main cloud forms. The new statistical data complement existing understanding of the interaction of atmospheric-electrical and actinometric characteristics and can be used to improve the models of global electric circuit and atmosphere, among other things, for numerical weather prediction and climate change modeling.
clouds, atmospheric electricity, electric field potential gradient, ultraviolet radiation
1. Krasnogorskaya N.V. Elektrichestvo nijnikh sloev atmosfery i metody ego izmereniya. L.: Gidrometizdat, 1972. 323 p.
2. Chalmers Dj.A. Atmosfernoe elektrichestvo. L.: Gidrometeoizdat, 1974. 420 p.
3. Harrison R.G. The Carnegie curve // Surv. Geophys. 2013. V. 34. P. 209–232. DOI: 10.1007/s10712-012-9210-2.
4. Mezuman K., Price C., Galanti E. On the spatial and temporal distribution of global thunderstorm cells // Environ. Res. Lett. 2014. V. 9, N 12. P. 124023. DOI: 10.1088/1748-9326/9/12/124023.
5. Pulinets S.A., Khachikyan G.Ya. Unitarnaya variatsiya v seismicheskom rejime zemli: sootvetstvie krivoi Karnegi // Geomagnetizm i aeronomiya. 2020. V. 60, N 6. P. 803–808. DOI: 10.31857/S0016794020060115.
6. Pkhalagov Yu.A., Ujegov V.N., Ippolitov I.I., Vinarskii M.V. Issledovaniya vzaimosvyazei opticheskikh i elektricheskikh kharakteristik prizemnoi atmosfery // Optika atmosf. i okeana. 2005. V. 18, N 5–6. P. 416–420.
7. Popov I.B. Osobennosti variatsii elektricheskoi provodimosti vozdukha vblizi Sankt-Peterburga // Trudy GGO. 2011. N 563. P. 149–165.
8. Harrison R.G. Aerosol-induced correlation between visibility and atmospheric electricity // J. Aerosol Sci. 2012. V. 52. P. 121–126. DOI: 10.1016/j.jaerosci.2012.04.011.
9. Smirnov S.E., Mikhailova G.A., Kapustina O.V. Variatsii kvazistaticheskogo elektricheskogo polya v prizemnoi atmosfere na Kamchatke vo vremya geomagnitnykh bur' v noyabre 2004 year // Geomagnetizm i aeronomiya. 2013. V. 53, N 4. P. 532–545. DOI: 10.7868/S0016794013040147.
10. Adjiev A.Kh., Kupovykh G.V. Izmereniya elektricheskogo polya atmosfery v vysokogornykh usloviyakh Priel'brus'ya // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 6. P. 710–715. DOI: 10.7868/S0002351515060024.
11. Adjiev A.Kh., Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Timoshenko D.V. Sutochnye variatsii elektricheskogo polya v prizemnom sloe atmosfery // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 4. P. 452–46. DOI: 10.31857/S0002351521040027.
12. Yaniv R., Yair Y., Price C., Katz Sh. Local and global impacts on the fair-weather electric field in Israel // Atmos. Res. 2016. V. 172–173. P. 119–125. DOI: 10.1016/j.atmosres.2015.12.025
13. Katz S., Yair Y., Price C., Yaniv R., Silber I., Lynn B., Ziv B. Electrical properties of the 8–12 September, 2015 massive dust outbreak over the Levant // Atmos. Res. 2018. V. 201. P. 218–225. DOI: 10.1016/j.atmosres.2017.11.004.
14. Anisimov S.V., Galichenko S.V., Mareev E.A. Electrodynamic properties and height of atmospheric convective boundary layer // Atmos. Res. 2017. V. 194. P. 119–129. DOI: 10.1016/j.atmosres.2017.04.012.
15. Anisimov S.V., Shikhova N.M., Kleimenova N.G. Otklik magnitosfernoi buri v atmosfernom elektricheskom pole srednikh shirot // Geomagnetizm i aeronomiya. 2021. V. 61, N 2. P. 172–183. DOI: 10.31857/S0016794021020024.
16. Zainetdinov B.G. Rezul'taty nablyudenii za elektricheskimi kharakteristikami prizemnogo sloya atmosfery v polyarnom regione // Trudy GGO. 2018. N 588. P. 47–61.
17. Firstov P.P., Malkin E.I., Akbashev R.R., Druzhin G.I., Cherneva N.V., Holzworth R.H., Uvarov V.N., Stasiy I.E. Registration of atmospheric-electric effects from volcanic clouds on the Kamchatka Peninsula (Russia) // Atmosphere. 2020. V. 11. P. 634. DOI: 10.3390/atmos11060634.
18. Ahmad N., Gurmani S.F., Basit A., Shah M.A., Iqbal T. Impact of local and global factors and meteorological parameters in temporal variation of atmospheric potential gradient // Adv. Space Res. 2021. V. 67. P. 2491–2503. DOI: 10.1016/j.asr.2021.01.046.
19. Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Dymovye shleify ot prirodnykh pojarov i elektricheskoe sostoyanie prizemnogo sloya atmosfery // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 155–161. DOI: 10.15372/AOO20220211; Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Smoke plumes from wildfires and the electrical state of the surface air layer // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 387–393.
20. Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. The electric field of the undisturbed atmosphere in the South of Western Siberia: A case study on Tomsk // Atmosphere. 2022. V. 13, N 4. P. 614. DOI: 10.3390/atmos13040614.
21. Adushkin V.V., Rybnov Yu.S., Ryabova S.A., Spivak A.A., Tikhonova A.V. Geofizicheskie effekty serii sil'nykh zemletryasenii v Turtsii 06.02.2023 year // Fizika zemli. 2023. N 6. P. 142–152. DOI: 10.31857/S0002333723060017.
22. Bennett A.J., Harrison R.G. Atmospheric electricity in different weather conditions // Weather. 2007. V. 62. P. 277–283. DOI: 10.1002/wea.97.
23. Klimenko V.V., Mareev E.A., Shatalina M.V., Shlyugaev Y.V., Sokolov V.V., Bulatov A.A., Denisov V.P. On statistical characteristics of electric fields of the thunderstorm clouds in the atmosphere // Radiophys. Quantum El. 2014. V. 56. P. 778–787. DOI: 10.1007/s11141-014-9480-2
24. Pustovalov K.N., Nagorskiy P.M. Sravnitel'nyi analiz elektricheskogo sostoyaniya prizemnogo sloya pri prokhojdenii kuchevo-dojdevykh oblakov v teplyi i kholodnyi periody goda // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 451–455. DOI: 10.15372/AOO20180605; Pustovalov K.N., Nagorskiy P.M. Comparative analysis of electric state of surface air layer during passage of cumulonimbus clouds in warm and cold seasons // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 685–689.
25. Pustovalov K.N., Nagorskiy P.M. Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds // J. Atmos. Sol.-Terr. Phys. 2018. V. 172. P. 33–39. DOI: 10.1016/j.jastp.2018.03.008.
26. Spivak A.A., Krasheninnikov A.V., Rybnov S.Yu., Rybnov Yu.S., Riabova S.A., Soloviev S.P., Tikhonova A.V. Variatsii geofizicheskikh kharakteristik prizemnoi atmosfery pri prokhozhdenii kuchevo-dozhdevykh oblakov. Pt. 1. Rezul'taty nablyudenii // Geofizicheskie protsessy i biosfera. 2024. V. 23, N 3. P. 41–51.
27. Nicoll K.A., Harrison R.G. Stratiform cloud electrification: Comparison of theory with multiple in-cloud measurements // Q. J. Roy. Meteor. Soc. 2016. V. 142. P. 2679–2691. DOI: 10.1002/qj.2858.
28. Popov I.B. Statisticheskie otsenki vliyaniya razlichnykh meteorologicheskikh yavlenii na gradient elektricheskogo potentsiala atmosfery // Trudy GGO. 2008. N 558. P. 152–161.
29. Toropov A.A., Kozlov V.I., Mullayarov V.A., Starodubtsev S.A. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration // J. Atmos. Sol.-Terr. Phys. 2013. V. 94. P. 13–18. DOI: 10.1016/j.jastp.2012.12.020.
30. Harrison R.G., Carslaw K.S. Ion-aerosol-cloud processes in the lower atmosphere // Rev. Geophys. 2003. V. 41, N 3. P. 1012. DOI: 10.1029/2002RG000114.
31. Stolzenburg M., Marshall T.C. Charge structure and dynamics in thunderstorms // Space Sci. Rev. 2008. V. 137. P. 355–372. DOI: 10.1007/978-0-387-87664-1_23.
32. Evtushenko A.A., Mareev E.A. O generatsii sloev elektricheskogo zaryada v mezomasshtabnykh konvektivnykh sistemakh // Izv. RAN. Fiz. atmosf. i okeana. 2009. V. 45, N 2. P. 255–265.
33. Sin’kevich A.A., Tarabukin I.A., Toropova M.L., Mikhailovskii Yu.P., Veremei N.E., Kurov A.B., Yusupov I.E., Bocharnikov N.V., Lalushkin A.S., Solonin A.S., Starykh D.S. Stroenie i kharakteristiki kuchevo-dojdevogo oblaka vo vremya formirovaniya molnii // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 921–927. DOI: 10.15372/AOO20231107; Sin’kevich A.A., Tarabukin I.A., Toropova M.L., Mikhailovskii Yu.P., Veremei N.E., Kurov A.B., Yusupov I.E., Bocharnikov N.V., Lalushkin A.S., Solonin A.S., Starykh D.S. Structure and characteristics of a Сb during lightning // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 66–73.
34. Zolotov S.Yu., Ippolitov I.I., Teodorovich Z.S. Izmenchivost' rasseyannoi UF-radiatsii v g. Tomske po izmereniyam 1994–2007 years. // Optika atmosf. i okeana. 2010. V. 23, N 2. P. 97–101.
35. Nezval' E.I., Chubarova N.E Mnogoletnie izmeneniya ul'trafioletovoi radiatsii v oblasti spektra 300–380 nm v Moskve // Meteorol. i gidrol. 2017. N 11. P. 5–13.
36. Pustovalov K.N., Nagorskiy P.M., Oglezneva M.V., Smirnov S.V. Izmenchivost' prizemnogo elektricheskogo polya pod vliyaniem meteorologicheskikh uslovii po dannym nablyudenii v g. Tomske // Optika atmosf. i okeana. 2024. V. 37, N 8. P. 681–687. DOI: 10.15372/AOO20240808; Pustovalov K.N., Nagorskiy P.M., Oglezneva M.V., Smirnov S.V. Variability of the surface electric field under the influence of meteorological conditions according to observations in Tomsk // Atmos. Ocean. Opt. 2024. V. 37, N 6. P. 815–821.
37. Andreev A.O., Dukal'skaya M.V., Golovina E.G. Oblaka: proiskhojdenie, klassifikatsiya, raspoznanie. SPb.: Izd-vo RGGMU, 2007. 228 p.