Vol. 39, issue 01, article # 9

Shikhovtsev M. Yu., Shikhovtsev A. Yu., Lezhenin A. A., Gradov V. S., Khaikin V. B., Kirichenko K. E., Kovadlo P. G. Application of the WRF model to estimation of the precipitable water vapor over the Sayan Solar Observatory and Khulugaysha Peak. // Optika Atmosfery i Okeana. 2026. V. 39. No. 01. P. 66–72. DOI: 10.15372/AOO20260109 [in Russian].
Copy the reference to clipboard
Abstract:

Precipitated water vapor (PWV) is the main gas that causes atmospheric opacity in millimeter and submillimeter wavelength ranges. This study uses the mesoscale Weather Research and Forecasting (WRF) model to effectively estimate PWV levels in order to determine the conditions at existing observatory sites and identify potential locations for a new large millimeter telescope. The results show that the WRF model successfully reproduces the spatio-temporal variability of PWV, identifying areas with minimal moisture content, which can be used for planning telescope observations.

Keywords:

precipitable water vapor, millimeter telescope, WRF, Sayan Solar Observatory, Hulugaisha peak

Figures:
References:

1. Bubukin I.T., Rakut' I.V., Agafonov M.I., Yablokov A.A., Pankratov A.L., Gorbunova T.Yu., Gorbunov R.V. Sravnitel'nyi analiz uslovii rasprostraneniya millimetrovykh radiovoln na radioastronomicheskikh poligonakh Rossii i Uzbekistana // Astronomicheskii jurnal. 2021. V. 98, N 7. P. 581–598. DOI: 10.31857/S0004629921080016.
2. Valeria L., Martínez-Ledesma M., Reeves R. Satellite-based atmospheric characterization for sites of interest in millimeter and sub-millimeter astronomy // Astron. Astrophys. 2024. V. 684, P. 186–190. DOI: 10.1051/0004-6361/202347773.
3. Starr V.P., White R.M. Direct measurement of the hemispheric poleward flux of water vapor // J. Marine Res. 1955. V. 14, N 3. P. 217–225.
4. Gong Y., Liu Z., Wai Chan P., Kwong Hon K. Assimilating GNSS PWV and radiosonde meteorological profiles to improve the PWV and rainfall forecasting performance from the Weather Research and Forecasting (WRF) model over the South China // Atmos. Res. 2023. V. 286. P. 106677. DOI: 10.1016/j.atmosres.2023.106677.
5. Wu M., Jin S., Li Z., Cao Y., Ping F., Tang X. High-precision GNSS PWV and its variation characteristics in China based on individual station meteorological data //Remote Sensing. 2021. V. 13, N 7. P. 1296. DOI: 10.3390/rs13071296.
6. Fiorucci I., Muscari G., Bianchi C., Di Girolamo P., Esposito F., Grieco G., Summa D., Bianchini G., Palchetti L., Cacciani M., Di Iorio T., Pavese G., Cimini D., de Zafra R.L. Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data // J. Geophys. Res.: Atmos. 2008. V. 113, N D14. DOI: 10.1029/2008JD009831.
7. Pałm M., Melsheimer C., Noël S., Heise S., Notholt J., Burrows J., Schrems O. Integrated water vapor above Ny Ålesund, Spitsbergen: A multi-sensor intercomparison // Atmos. Chem. Phys. 2010. V. 10, N 3. P. 1215–1226. DOI: 10.5194/acp-10-1215-2010.
8. Vdovin V.F., Zarezin A.M., Zemlyanukha P.M., Kotov A.V., Lesnov I.V., Marukhno A.S., Mineev K.V., Muravev V.M., Nosov V.I., Salkov V.A. Concept of a radiometer for measurements of the optical depth of the atmosphere in a 1.3-mm window of atmospheric transparency // Instrum. Exp. Tech. 2024. V. 67, N 5. P. 1007–1017. DOI: 10.1134/S0020441224701501.
9. Khabarova T.A., Zemlyanukha P.M., Dombek E.M., Marukhno A.S., Vdovin V.F. Analiz rezul'tatov izmerenii astroklimata v millimetrovom diapazone dlin voln s ispol'zovaniem metodov mashinnogo obucheniya // Astrofizicheskii byulleten'. 2024. V. 79, N 2. P. 350–360.
10. Pérez-Jordán G., Castro-Almazan J.A., Munoz-Tunon C. Precipitable water vapour forecasting: A tool for optimizing IR observations at Roque de los Muchachos Observatory // Mon. Not. Roy. Astron. Soc. 2018. V. 477, N 4. P. 5477–5485. DOI: 10.1093/mnras/sty943.
11. Pozo D., Marín J.C., Illanes L., Curé M., Rabanus D. Validation of WRF forecasts for the Chajnantor region // Mon. Not. Roy. Astron. Soc. 2016. V. 459, N 1. P. 419–426. DOI: 10.1093/mnras/stw600.
12. González A., Expósito F.J., Pérez J.C., Díaz J.P., Taima D. Verification of precipitable water vapour in high-resolution WRF simulations over a mountainous archipelago // Quant. J. Roy. Meteorol. Soc. 2013. V. 139, N 677. P. 2119–2133. DOI: 10.1002/qj.2092.
13. Zaiko P.O. Sistema usvoeniya nazemnykh i aerologicheskikh nablyudenii v mezomasshtabnuyu chislennuyu model' WRF-ARW v Belgidromete // Prirodnye resursy. 2019. N 1. P. 89–96.
14. Khaikin V.B., Shikhovtsev A.Yu., Mironov A.P., Qian X. A Study of the Astroclimate in the Dagestan Mountains Agul Region and at the Ali Observatory in Tibet as Possible Locations for the Eurasian SubMM Telescopes (ESMT) // The Multifaceted Universe: Theory and Observations – 2022 (MUTO2022). 2022. V. 425. P. 072–079. DOI: 10.22323/1.425.0072.
15. Khabarova T.A., Zemlyanukha P.M., Dombek E.M., Markov K.V., Marukhno A.S., Khudchenko A.V., Vdovin V.F. Astroklimat v okrestnosti pika Khulugaisha na osnove analiza meteorologicheskikh i radiometricheskikh izmerenii // Izv. vuzov. Radiofizika. 2025. V. 68, N 1. P. 18–28. DOI: 10.52452/00213462_2025_68_01_18.
16. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Liu Z., Berner J., Wang W., Powers J.G., Duda M.G., Barker D.M., Huang X.Y. A Description of the Advanced Research WRF Version 4 // NCAR Tech. Note NCAR/TN-556+STR. 2019. 145 p. DOI: 10.5065/1dfh-6p97.
17. Weather Research and Forecasting (WRF) Model. URL: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (last access: 14.11.2024).
18. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. DOI: 10.5065/D65D8PWK.
19. Shikhovtsev A.Y., Kovadlo P.G., Lezhenin A.A., Korobov O.A., Kiselev A.V., Russkikh I.V., Shikhovtsev M.Y. Influence of atmospheric flow structure on optical turbulence characteristics // Appl. Sci. 2023. V. 13, N 3. Р. 1282–1296. DOI: 10.3390/app13031282.
20. Shikhovtsev A.Y., Kovadlo P.G., Baron P. Candidate Sites for Millimeter and Submillimeter Ground-Based Telescopes: Atmospheric Rating for the Eurasian Submillimeter Telescopes Project // Sensors. 2025. V. 25, N 7. P. 2144. DOI: 10.3390/s25072144.
21. Khaikin V.B., Shikhovtsev A.Yu., Shmagin V.E., Lebedev M.K., Kopylov E.A., Lukin V.P., Kovadlo P.G. O proekte evraziiskikh submillimetrovykh teleskopov (ESMT) i vozmojnosti primeneniya adaptivnoi optiki dlya uluchsheniya kachestva submm izobrajenii // Jurn. radioelektron. 2022. N 7. DOI: 10.30898/1684-1719. 2022.7.9.