Vol. 39, issue 02, article # 1

Vlasenko S. S., Mikhailova A. S., Mikhailov E. F., Nebos’ko E. Yu. Estimation of seasonal variability of aerosol radiative forcing based on measurements of atmospheric aerosol optical properties at ZOTTO station. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 87–94. DOI: 10.15372/AOO20260201 [in Russian].
Copy the reference to clipboard
Abstract:

Atmospheric aerosols are a significant factor of variations in the radiative balance, particularly for such regions as Central Siberia, where there are many anthropogenic and biogenic aerosol sources. However, the parameters and seasonal dynamics of aerosol radiative forcing in this region remain understudied. The aim of this work is to estimate the efficiency of aerosol radiative forcing (RFE) for the atmosphere of Central Siberia based on measurements of aerosol scattering and absorption coefficients at background ZOTTO station in 2007–2024. The atmospheric and underlying surface characteristics required for calculating RFE were taken from MERRA-2 reanalysis data. The resulting time series of RFЕ for ZOTTO station show strong day-to-day variability and a clearly pronounced seasonal cycle. Although the maximal concentrations of absorbing (soot) aerosol and, consequently, the maximal values of the aerosol absorption coefficient are observed in summer, the efficiency of aerosol forcing during this period is negative, with the characteristic RFЕ =-30 W/m2. In winter, when aerosol concentrations and aerosol optical coefficients are substantially lower, the efficiency of aerosol forcing is positive and amounts to approximately +25 W/m2; the measurement-period mean RFE =-5 W/m2. The change in the sign of aerosol forcing from positive to negative occurs in early May, and vice versa, in late October, which is primarily due to the seasonal change in the albedo of the underlying surface. The results can be used to refine predictions of regional climate changes in Siberia.

Keywords:

atmospheric aerosol, radiative forcing, single scattering albedo, aerosol scattering coefficient, aerosol absorption coefficient, smoke aerosol

Figures:
References:

1. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Willey & Son, 1997. 1326 p.
2. Tsipushtanova T.V., Luzhetskaya A.P., Poddubnyi V.A. Otsenka aerozol'nogo radiatsionnogo forsinga atmosfery v Ekaterinburge, Tomske i Bratts Lake (Kanada) po dannym izmerenii global'noi seti monitoringa «AERONET» // Fizika. Tekhnologii. Innovatsii: Sb. nauch. trudov. Ekaterinburg: Uralskii federslnyi. universitet, 2015. Iss. 1. P. 205–211.
3. Sena E.T., Artaxo P., Correia A.L. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia // Atmos. Chem. Phys. 2013. V. 13. P. 1261–1275. DOI: 10.5194/acp-13-1261-2013.
4. Gorchakov G.I., Gushchin R.A., Kopeikin V.M., Karpov A.V., Semutnikova E.G., Datsenko O.I., Ponomareva T.Ya. Anomal'noe pogloshchenie dymovogo aerozolya v vidimoi i blizhnei infrakrasnoi oblastyakh spektra // Dokl. RAN. Nauki o Zemle. 2023. V. 510, N 1. P. 92–98.
5. Shukurov K.A., Mokhov I.I., Shukurova L.M. Otsenka radiatsionnogo forsinga dymovogo aerozolya letnikh pozharov 2010 year na osnove izmerenii v moskovskom regione // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 3. P. 293–303.
6. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V.P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2021. V. 2391. DOI: 10.1017/9781009157896.
7. Nasrtdinov I.M., Zenkova P.N., Zhuravleva T.B., Uzhegov V.N., Konovalov I.B. Modelirovanie radiatsionnogo forsinga dymovogo aerozolya v Arktike s ispol'zovaniem dannykh izmerenii v Bol'shoi aerozol'noi kamere IOA SO RAN // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 209–213. DOI: 10.15372/AOO20230307; Nasrtdinov I.M., Zenkova P.N., Zhuravleva T.B., Uzhegov V.N., Konovalov I.B. Simulation of radiative forcing of smoke aerosol in the Arctic using measurements in the Large Aerosol Chamber of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 379–383.
8. Anderson T.L., Covert D.S., Marshall S.F., Laucks M.L., Charlson R.J., Waggoner A.P., Ogren J.A., Caldow R., Holm R.L., Quant F.R., Sem G.J., Wiedensohler A., Ahlquist N.A., Bates T.S. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer // J. Atmos. Ocean. Technol. 1996. V. 13, N 5. P. 967–986. DOI: 10.1175/1520-0426(1996)013<0967:pcoahs>2.0.co;2.
9. Aaltonen V., Lihavainen H., Kerminen V.-M., Komppula M., Hatakka J., Eneroth K., Kulmala M., Viisanen Y. Measurements of optical properties of atmospheric aerosols in Northern Finland // Atmos. Chem. Phys. 2006. V. 6. P. 1155–1164. DOI: 10.5194/acpd-5-11703-2005.
10. Bond T.C., Anderson T.L., Campbell D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols // Aerosol Sci. Tech. 1999. V. 30. P. 582–600. DOI: 10.1080/027868299304435.
11. Weingartner E., Saathoff H., Schnaiter M., Streit N., Bitnar B., Baltensperger U. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers // J. Aerosol Sci. 2003. V. 34. P. 1445–1463. DOI: 10.1016/S0021-8502(03)00359-8.
12. Virkkula A., Ahlquist N.C., Covert D.S., Arnott W.P., Sheridan P.J., Quinn P.K., Coffman D.J. Modification, calibration and a field test of an instrument for measuring light absorption by particles // Aerosol Sci. Tech. 2005. V. 39. P. 68–83. DOI: 10.1080/027868290901963.
13. Mikhailov E., Mironova S., Mironov G., Vlasenko S., Panov A., Chi X., Walter D., Carbone S., Artaxo P., Heimann M., Lavric J., Pöschl U., Andreae M.O. Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia // Atmos. Chem. Phys. 2017. V. 17. P. 14365–14392. DOI: 10.5194/acp-17-14365-2017.
14. Vlasenko S.S., Mikhailova A.S., Ivanova O.A., Nebosko E.Yu., Mikhailov E.F., Ryshkevich T.I. Prostranstvennoe raspredelenie potentsial'nykh istochnikov uglerodsoderzhashchikh aerozolei v TSentral'noi Sibiri // Optika atmosf. i okeana. 2024. V. 37, N 2. P. 114–120. DOI: 10.15372/AOO20240204; Vlasenko S.S., Mikhailova A.S., Ivanova O.A., Nebosko E.Yu., Mikhailov E.F., Ryshkevich T.I. Spatial distribution of potential sources of carbonaceous aerosols in Central Siberia // Atmos. Ocean. Opt. 2024. V. 37, N 3. P. 309–314.
15. Bondur V.G., Voronova O.S., Cherepanova E.V., Tsidilina M.N., Zima A.L. Prostranstvenno-vremennoi analiz mnogoletnikh prirodnykh pozharov i emissii vrednykh gazov i aerozolei v Rossii po kosmicheskim dannym // Issledovanie Zemli iz kosmosa. 2020. N 4. P. 3–17.
16. Sheridan P.J., Ogren J.A. Observations of the vertical and regional variability of aerosol optical properties over central and eastern North America // J. Geophys. Res.: Atmos. 1999. V. 104. P. 16793–16805. DOI: 10.5194/acp-12-11695-2012.
17. Rizzo L.V., Artaxo P., Muller T., Wiedensohler A., Paixao M., Cirino G.G., Arana A., Swietlicki E., Roldin P., Fors E.O., Wiedemann K.T., Leal L.S.M., Kulmala M. Long term measurements of aerosol optical properties at a primary forest site in Amazonia // Atmos. Chem. Phys. 2013. V. 13. P. 2391–2413. DOI: 10.5194/acpd-12-23333-2012.
18. Luoma K., Virkkula A., Aalto P., Petäjä T., Kulmala M. Over a 10-year record of aerosol optical properties at SMEAR II // Atmos. Chem. Phys. 2019. V. 19. P. 11363–11382. DOI: 10.5194/acp-2018-981.
19. The Modern-Era Retrospective Analysis for Research and Applications, version 2. URL: https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary (last access: 16.02.2025).
20. Gorchakov G.I., Gushchin R.A., Kopeikin V.M., Karpov A.V., Semutnikova E.G., Datsenko O.I., Ponomareva T.Ya. Anomal'noe selektivnoe pogloshchenie dymovogo aerozolya pri massovykh lesnykh pozharakh na Alyaske v july–august 2019 // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 6. P. 740–753.
21. Rizzo L.V., Correia A.L., Artaxo P., Procopio A.S., Andreae M.O. Spectral dependence of aerosol light absorption over the Amazon Basin // Atmos. Chem. Phys. 2011. V. 11. P. 8899–8912. DOI: 10.5194/acp-11-8899-2011.
22. Bird R.E., Hulstrom R.L. Terrestrial solar spectral data sets // Solar Energy. 1983. V. 30, N 6. P. 563–573. DOI: 10.1016/0038-092X(83)90068-3.
23. Thuillier G., Herse M., Labs D., Foujols T., Peetermans W., Gillotay D., Simon P.C., Mandel H. The solar spectral irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the ATLAS and EURECA missions // Solar Phys. 2003. V. 214. P. 1–22. DOI: 10.1023/A:1024048429145.
24. Zhao G., Zhao Ch., Kuang Ye., Bian Yu., Tao J., Shen Ch., Yu Y. Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system // Atmos. Chem. Phys. 2018. V. 18. P. 9049–9060. DOI: 10.5194/acp-18-9049-2018.
25. Sviridenkov M.A., Mikhailov E.F., Nebos’ko E.Yu. Parametrizatsiya srednego kosinusa indikatrisy rasseyaniya sveta atmosfernym aerozolem // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 377–382. DOI: 10.15372/AOO20170503; Sviridenkov M.A., Mikhailov E.F., Nebos’ko E.Yu. Parameterization of asymmetry factor of atmospheric aerosol scattering phase function // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 435–440.
26. Andrew E., Sheridan P.J., Fiebig M., McCominskey A., Ogren J.A., Arnott P., Covert D., Ellemann R., Gasparini R., Collins D., Jonsson H., Schmid B. Comparison of methods for deriving aerosol asymmetry parameter // J. Geophys. Res. 2006. V. 111, N 16. P. 1–16. DOI: 10.1029/ 2004JD005734 D05S0404.
27. Horvath H., Kasahara M., Tohno S., Olmo F.J., Lyamani H., Alados-Arboledas L., Quirantes A., Cachorro V. Relationship between fraction of backscattered light and asymmetry parameter // J. Aerosol Sci. 2016. V. 91, N 1. P. 43–53. DOI: 10.1016/j.jaerosci.2015.09.003.
28. Henyey L.G., Greenstein J.L. Diffuse radiation in the galaxy // Astrophys. J. 1941. V. 93. P. 70–83. DOI: 10.1086/144246.
29. Wiscomb W.J., Grams G.W. The backscattered fraction in two-stream approximations // J. Atmos. Sci. 1976. V. 33, N 12. P. 2440–2451. DOI: 10.1175/1520-0469(1976)033<2440:TBFITS>2.0.CO;2.
30. Anderson R.U. Derivation of Solar Position Formulae //arXiv:2009.07094. 2020. DOI: 10.48550/arXiv.2009. 7094.
31. Sharma S., Chakraborty A. Effect of seasonal variability of aerosols in radiative forcing and Indian summer monsoon rainfall over south Asia during ENSO events // Environ. Sci. Adv. 2025. DOI: 10.1039/d5va00140d.
32. Khobragade P.P., Ahirwar A.V. Seasonal variation in aerosol optical depth and study of PM2.5 – AOD empirical relationship in Raipur, Chhattisgarh, India // Res. Eng. Struct. Mater. 2023. V. 9, N 3. P. 763–773. DOI: 10.17515/resm2023.548ma1008tn.
33. Zhuravleva T.B., Nasrtdinov I.M., Konovalov I.B., Golovushkin N.A. Radiatsionnyi forsing dymovogo aerozolya s uchetom fotokhimicheskoi evolyutsii ego organicheskoi komponenty: vliyanie uslovii osveshchennosti i al'bedo podstilayushchei poverkhnosti // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 748–758. DOI: 10.15372/AOO20220908; Zhuravleva T.B., Nasrtdinov I.M., Konovalov I.B., Golovushkin N.A. Radiative Forcing of smoke aerosol taking into account the photochemical evolution of its organic component: Impact of illumination conditions and surface albedo // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S113–S124.