Atmospheric waves on a planetary scale play the main role in the formation of the atmosphere regime, and a polar vortex forms in the stratosphere in winter. A striking example of the interannual variability of the stratospheric polar vortex caused by stationary planetary waves is sudden stratospheric warming (SSW). The internal dynamics of major sudden stratospheric warming accompanied by displacement and splitting of the stratospheric polar vortex (SPV) was studied based on the MERRA-2 reanalysis data from the point of view of explicitly calculating nonlinear interactions of planetary waves with each other and with the mean flow to identify similar trends in the formation of SSW of various types. In particular, it is shown that the formation of a SSW with SPV splitting is not always accompanied by dominant variations in the wave activity of stationary planetary wave with zonal wavenumber 2 (SPW2), but is determined by the maximum interactions of SPW2 with the mean flow. It was obtained that the wave–wave interactions during the generation of secondary stationary planetary wave with zonal wavenumber 1 (SPW1) are maximal 1–2 weeks before, and during the generation of secondary SPW2, 5–10 days before a SSW with SPV displacement. The results aimed at identifying predictors of SSW formation are important due to the fact that SSW significantly affects the entire middle atmosphere, ionosphere, as well as weather conditions in the troposphere and the formation of extreme weather events.
sudden stratospheric warming, stratospheric polar vortex, planetary wave, eddy potential enstrophy, wave activity
1. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Charlton-Perez A.J., Butler A.H., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden Stratospheric Warmings // ESS Open Archive. 2020. DOI: 10.1002/essoar.10502884.1.
2. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings // Bull. Am. Meteorol. Soc. 2015. V. 96. P. 1913–1928. DOI: 10.1175/BAMS-D-13-00173.1.
3. Vargin P.N., Volodin E.M., Karpechko A.Yu., Pogorel'tsev A.I. O stratosferno-troposfernykh vzaimodeistviyakh // Vestn. RAN. 2015. V. 85, N 1. P. 39–46. DOI: 10.7868/S0869587315010181.
4. Holton J.R. The Dynamic Meteorology of the Stratosphere and Mesosphere. Boston: American Meteorological Society, 1975. P. 209–216. DOI: 10.1007/978-1-935704-31-7.
5. Rhodes C.T., Barton C., Eckermann S., Kuhl D., Ma J. Evidence of the double amplification of traveling planetary waves during the January 2021 sudden stratospheric warming // Mon. Weather Rev. 2024. V. 152. P. 2679–2695. DOI: 10.1175/MWR-D-23-0226.1.
6. Yang Y., Li H. Planetary wave activity during 2019 sudden stratospheric warming event revealed by ERA5 reanalysis data // Remote Sens. 2024. V. 16, N 4739. DOI: 10.3390/rs16244739.
7. Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Oprokidyvanie voln Rossbi v stratosfere. CHast' I. Klimatologiya i dolgovremennaya izmenchivost' // Optika atmosf. i okeana. 2024. V. 37, N 5. P. 415–422. DOI: 10.15372/AOO20240509; Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Rossby wave breaking in the stratosphere: Part I – Climatology and long-term variability // Atmos. Ocean. Opt. 2024. V. 37, N 4. P. 514–521.
8. Polvani L.M., Waugh D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes // J. Clim. 2004. V. 17. P. 3548–3554. DOI: 10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.
9. Hannachi A., Lechner M., Finke K., Mukhin D. Stratospheric polar vortex, wave absorption/reflection and effect on surface climate // Clim. Dyn. 2025. V. 63, N 126. DOI: 10.1007/s00382-025-07610-1.
10. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Clim. 2007. V. 20. P. 449–469. DOI: 10.1175/JCLI3996.1.
11. Seviour W.J.M., Gray L.J., Mitchell D.M. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models // J. Geophys. Res.: Atmos. 2016. V. 121. P. 1–14. DOI: 10.1002/2015JD024178.
12. Boljka L., Birner T. Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling // Weather Clim. Dyn. 2020. V. 1. P. 555–575. DOI: 10.5194/wcd-2020-23.
13. Bancalá S., Krüger K., Giorgetta M. The preconditioning of major sudden stratospheric warmings // J. Geophys. Res. 2012. V. 117. P. D04101. DOI: 10.1029/2011JD016769.
14. Barriopedro D., Calvo N. On the relationship between ENSO, stratospheric sudden warmings, and blocking // J. Clim. 2014. V. 27, N 12. P. 4704–4720. DOI: 10.1175/JCLI-D-13-00770.1.
15. Hitchcock P., Simpson I.R. The downward influence of stratospheric sudden warmings // J. Atmos. Sci. 2014. V. 71. P. 3856–3876.
16. Kidston J., Scaife A., Hardiman S., Mitchell D.M., Butchart N., Baldwin M.P., Gray L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather // Nature Geosci. 2015. V. 8. P. 433–440. DOI: 10.1038/ngeo2424.
17. Maycock A.C., Masukwedza G.I., Hitchcock P., Simpson I.R. A regime perspective on the north Atlantic Eddy-driven jet response to sudden stratospheric warmings // J. Clim. 2020. V. 33. P. 3901–3917. DOI: 10.1175/JCLI-D-19-0702.1.
18. Domeisen D.I, Butler A.H., Charlton-Perez A.J., Ayarzagüena B., Baldwin M.P., Dunn-Sigouin E., Furtado J.C., Garfinkel C.I., Hitchcock P., Karpechko A.Yu., Kim H., Knight J., Lang A.L., Lim E.-P., Marshall A., Roff G., Schwartz C., Simpson I.R., Son S.-W., Taguchi M. The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere–troposphere coupling // J. Geophys. Res. 2020. V. 125. DOI: 10.1029/2019JD030923.
19. Gupta S., Upadhayaya A.K., Siingh D. Ionospheric response to sudden stratospheric warming events across longitudes during solar cycle 24 // J. Geophys. Res.: Space Phys. 2021. V. 126. DOI: 10.1029/2021JA029206.
20. Hocke K., Wang W., Ma G. Influences of sudden stratospheric warmings on the ionosphere above Okinawa // Atmos. Chem. Phys. 2024. V. 24. P. 5837–5846. DOI: 10.5194/acp-24-5837-2024.
21. Klimenko M.V., Klimenko V.V., Koren'kov Yu.N., Bessarab F.S., Karpov I.V., Ratovsky K.G., Chernigovskaya M.A. Modeling of response of the thermosphere-ionosphere system to sudden stratospheric warmings of years 2008 and 2009 // Cosmic Res. 2013. V. 51, N 1. P. 54–63. DOI: 10.1134/S001095251301005X.
22. Matsuno T.A. Dynamical model of stratospheric warmings // J. Atmos. Sci. 1971. V. 28. P. 1479–1494. DOI: 10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
23. Cullens С.Y., Thurairajah B. Gravity wave variations and contributions to stratospheric sudden warming using long-term ERA5 model output // J. Atmos. Sol.-Terr. Phys. 2021. V. 219. DOI: 10.1016/j.jastp.2021.105632.
24. Pogoreltsev A.I., Savenkova E.N., Aniskina O.G., Ermakova T.S., Chen W., Wei K. Interannual and intraseasonal variability of stratospheric dynamics and stratosphere–troposphere coupling during northern winter // J. Atmos. Sol.-Terr. Phys. 2015. V. 136. P. 187–200. DOI: 10.1016/j.jastp.2015.08.008.
25. Didenko K.A., Ermakova T.S., Koval' A.V., Pogorel'tsev A.I. Diagnostika nelineinykh vzaimodeistvii statsionarnykh planetarnykh voln // Uchenye zapiski RGGMU. 2019. N 56. P. 19–29. DOI: 10.33933/2074-2762-2019-56-19-29.
26. Kandieva K.K., Aniskina O.G., Pogorel'tsev A.I., Zorkal'tseva O.S., Mordvinov V.I. Vliyanie ostsillyatsii Maddena–Dzhuliana i kvazidvukhletnego kolebaniya na dinamiku vnetropicheskoi stratosfery // Geomagnetizm i aeronomiya. 2019. V. 59, N 1. P. 114–124. DOI: 10.1134/S0016794018060068.
27. Ermakova T.S., Aniskina O.G., Statnaya I.A., Motsakov M.A., Pogoreltsev A.I. Simulation of the ENSO influence on the extra-tropical middle atmosphere // Earth, Planets and Space. 2019. V. 71, N 8. DOI: 10.1186/s40623-019-0987-9.
28. Lifar V.D., Didenko K.A., Koval A.V., Ermakova T.S. Chislennoe modelirovanie vliyaniya faz KDK i ENYuK na rasprostranenie planetarnykh voln i formirovanie vnezapnogo stratosfernogo potepleniya // Optika atmosf. i okeana. 2024. V. 37, N 2. P. 138–144. DOI: 10.15372/AOO20240207; Lifar V.D., Didenko K.A., Koval A.V., Ermakova T.S. Numerical simulation of QBO and ENSO phase effect on the propagation of planetary waves and the evolvement of sudden stratospheric warming // Atmos. Ocean. Opt. 2024. V. 37, N 3. P. 415–421.
29. Kuroda Y., Kodera K. Effect of solar activity on the polar-night jet oscillation in the Northern and Southern Hemisphere winter // J. Meteorol. Soc. Japan. 2002. V. 80. P. 973–984. DOI: 10.2151/jmsj.80.973.
30. Anstey J.A., Shepherd T.G. High-latitude influence of the Quasi-Biennial Oscillation // Q. J. Roy. Meteor. Soc. 2014. V. 140. P. 1–21. DOI: 10.1002/qj.2132.
31. Gerber E.P., Butler A., Calvo N., Charlton-Perez A., Giorgetta M., Manzini E., Perlwitz J., Polvani L.M., Sassi F., Scaife A.A., Shaw T.A., Son S.-W., Watanabe S. Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system // Bull. Am. Meteorol. Soc. 2012. V. 93. P. 845–858. DOI: 10.1175/BAMS-D-11-00145.1.
32. Eliassen A., Palm E. On the transfer of energy in stationary mountain waves // Geophys. Publ. 1961. V. 22. P. 1–23.
33. Andrews D.G., McIntyre M.E. Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and zonal acceleration // J. Atmos. Sci. 1976. V. 33. P. 2031–2053. DOI: 10.1175/1520-0469(1976) 033<2031:PWIHAV>2.0.CO;2.
34. Andrews D.G., McIntyre M.E. Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmosphere // J. Atmos. Sci. 1978. V. 35. P. 175–185. DOI: 10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
35. Smith A.K., Gille J.C., Lyjak L.V. Wave–wave interactions in the stratosphere: Observations during quiet and active wintertime periods // J. Atmos. Sci. 1984. V. 41. P. 363–373. DOI: 10.1175/1520-0469(1984)041<0363:WIITSO>2.0.CO;2.
36. Schoeberl M.R., Smith A.K. The integrated enstrophy budget of the winter stratosphere diagnosed from LIMS data // J. Atmos. Sci. 1986. V. 43. P. 1074–1086. DOI: 10.1175/1520-0469(1986)043<1074:TIEBOT>2.0.CO;2.
37. Giannitsis C., Lindzen R.S. Nonlinear saturation of topographically forced Rossby waves in a barotropic model // J. Atmos. Sci. 2001. V. 58. P. 2929. DOI: 10.1175/1520-0469(2001)058<2927:NSOTFR>2.0.CO;2.
38. Waite M.L. Potential enstrophy in stratified turbulence // J. Fluid Mech. 2013. V. 722. P. 1–3. DOI: 10.1017/jfm.2013.150.
39. Jung J.-H., Konor C.S., Mechoso C.R., Arakawa A. A study of the stratospheric major warming and subsequent flow recovery during the winter of 1979 with an isentropic vertical coordinate model // J. Atmos. Sci. 2001. V. 58. P. 2630–2649. DOI: 10.1175/1520-0469(2001)058<2630:ASOTSM>2.0.CO;2.
40. Tao X. Wave-mean flow interaction and stratospheric sudden warming in an isentropic model // J. Atmos. Sci. 1994. V. 51. P. 134–153.
41. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A., Gu W., Kim G.K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Paw-son S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J. Clim. V. 2017. V. 30, N 13. Р. 5419–5454. DOI: 10.1175/JCLI-D-16-0758.1.
42. Butler A.H., Sjoberg J.P., Seidel D.J., Rosenlof K.H. A sudden stratospheric warming compendium // Earth Syst. Sci. Data. 2017. V. 9. P. 63–76. DOI: 10.5194/essd-9-63-2017.
43. Martineau P., Son S.-W., Taguchi M., Butler A.H. A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events // Atmos. Chem. Phys. 2018. V. 18. P. 7169–7187. DOI: 10.5194/acp-18-7169-2018.
44. Siddiqui T.A., Yamazaki Y., Stolle C., Lühr H., Matzka J., Maute A., Pedatella N. Dependence of lunar tide of the equatorial electrojet on the wintertime polar vortex, solar flux, and QBO // Geophys. Res. Lett. 2018. V. 45. P. 3801–3810. DOI: 10.1029/2018GL077510.
45. Choi H., Kim B.-M., Choi W. Type classification of sudden stratospheric warming based on pre- and postwarming periods // J. Clim. 2019. V. 32. P. 2349–2367. DOI: 10.1175/JCLI-D-18-0223.1.
46. Li Y., Kirchengast G., Schwaerz M., Yuan Y. Monitoring sudden stratospheric warmings under climate change since 1980 based on reanalysis data verified by radio occultation // Atmos. Chem. Phys. 2023. V. 23. P. 1259–1284. DOI: 10.5194/acp-23-1259-2023.
47. Smith A.K. Observation of wave—wave interactions in the stratosphere // J. Atmos. Sci. 1983. V. 40. P. 2484–2493. DOI: 10.1175/1520-0469(1983)040<2484:OOWWII>2.0.CO;2.
48. Didenko K.A., Bikbulatov B.A., Ermakova T.S., Koval' A.V. Issledovanie volnovykh protsessov vo vremya slozhnykh vnezapnykh stratosfernykh poteplenii // Gidrometeorol. i ekologiya. 2024. N 75. P. 251–268.
49. Didenko K.A., Koval A.V., Ermakova T.S., Sokolov A.V., Toptunova O.N. Analysis of a secondary 16-day planetary wave generation through nonlinear interactions in the atmosphere // Earth, Planets Space. 2024. V. 76. P. 124. DOI: 10.1186/s40623-024-02072-x.
50. Pogoreltsev A.I. Numerical simulation of secondary planetary waves arising from the nonlinear interaction of the normal atmospheric modes // Phys. Chem. Earth (Part C). 2001. V. 26. P. 395–403. DOI: 10.1016/S1464-1917(01)00020-4.