Studying the spatial distribution and temporal variation in CH4 concentration as a greenhouse gas is a relevant but difficult scientific task in the Arctic. Reanalysis data can serve an additional source of information, but they require regular validation. This study presents the results of an assessment of the reproduction of surface CH4 concentration by CAMS global greenhouse gas reanalysis database version EGG4 in the Arctic region. Reanalysis data on the surface CH4 concentrations variations are compared with continuous measurements at the research station “Ice Base Cape Baranova" (79°16¢ N, 101°45¢ E) in 2016–2020 on different time scales (interannual, seasonal, daily). It is found that reanalysis data reflect the interannual variability of surface CH4 concentrations the worst. The seasonal variability of the CH4 concentration is well described by the reanalysis data, the model amplitudes of the seasonal cycle are slightly higher than the actual ones. The comparison of the model and actual values of surface temperature and wind speed and direction are also carried out. Such verification of the CAMS database is useful before its subsequent using in regional-scale numerical modeling and other applied problems.
methane, atmospheric composition, the Arctic, CAMS reanalysis
1. Mcguire A., Christensen T.R., Hayes D., Heroult A., Euskirchen E., Kimball J., Koven Ch., Lafleur P., Miller P., Oechel W., Peylin Ph., Williams M., Yi Y. An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions // Biogeosci. Discuss. 2012. V. 9. P. 3185–3204. DOI: 10.5194/bg-9-3185-2012.
2. Ming T., de Richter R., Felzer B.S., Li W. Jump in tropospheric methane concentrations in 2020–2021 and slowdown in 2022–2024: New hypotheses on causation // Atmosphere. 2025. V. 16, N 4. P. 406. DOI: 10.3390/atmos16040406.
3. Peng S., Lin X., Thompson R.L., Xi Y., Liu G., Hauglustaine D., Lan X., Poulter B., Ramonet M., Saunois M., Yin Y., Zhang Z., Zheng B., Philippe C. Wetland emission and atmospheric sink changes explain methane growth in 2020 // Nature. 2022. V. 612. P. 477–482. DOI: 10.1038/s41586-022-05447-w.
4. Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2021 year / pod red. G.M. Chernogaeva. M.: Federal'naya sluzhba po gidrometeorologii i monitoringu okruzhayushchei sredy (Rosgidromet), 2022. 221 p.
5. Doklad o sostoyanii i perspektivakh klimaticheskogo obsluzhivaniya v Rossiiskoi Federatsii v usloviyakh izmeneniya klimata / pod red. d.f.-m.n. V.M. Kattsova. SPb.: FGBU GGO, 2025. 106 p.
6. Antokhin P N., Arshinova V.G., Arshinov M Yu., Belan B.D., Belan S.B., Davydov D.K., Ivlev G.A., Козлов А.V., Рассказчикова Т.M., Савкин Д.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Kompleksnaya otsenka sostava vozdukha nad Rossiiskim sektorom Arktiki v september 2020 year // Optika atmosf. i okeana. 2024. V. 37, N 10. P. 822–829. DOI: 10.15372/AOO20241002; Antokhin P., Arshinova V., Arshinov M., Belan B., Belan S., Davydov D., Ivlev G., Kozlov A., Rasskazchikova T., Savkin D., Simonenkov D., Sklyadneva T., Tolmachev G., Fofonov A. Complex assessment of air composition over the Russian Arctic in September 2020 // Atmos. Ocean. Opt. 2025. V. 38, N 1. P. 37–45.
7. Pankratova N.V., Belikov I.B., Belousov V.A., Kopeikin V.M., Skorokhod A.I., Shtabkin Yu.A., Malafeev G.V., Flint M.V. Kontsentratsiya metana, ozona, chernogo ugleroda, oksidov azota, ugleroda i soderzhanie d13CCH4 nad moryami rossiiskoi Arktiki (sudovye nablyudeniya) // Okeanologiya. 2020. V. 60, N 5. P. 685–695.
8. Panov A.V., Prokushkin A.S., Kyubler K., Korets M.A., Urban A.V., Zrazhevskaya G.K., Bondar' M.G., Khaimann M., Zaale Z. Pretsezionnyi monitoring kontsentratsii dioksida ugleroda i metana v prizemnoi atmosfere polyarnogo poyasa Prieniseiskoi Sibiri // Meteorol. i gidrol. 2022. N 11. P. 19–31.
9. Copernicus Atmosphere Monitoring Service (2021): CAMS Global Greenhouse Gas Reanalysis (EGG4). Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store. URL: https://ads.atmosphere. copernicus.eu/datasets/cams-global-ghg-reanalysis-egg4? tab=overview. DOI: 10.24381/cda4ed31 (last access: 25.06.2025).
10. Nerobelov G.M., Timofeyev Y.M., Smyshlyaev S.P., Virolainen Y.A., Makarova M.V., Foka S.Ch. Sopostavlenie dannykh CAMS po soderzhaniyu CO2 s rezul'tatami izmerenii v Petergofe // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 805–810. DOI: 10.15372/AOO20201009; Nerobelov G.M., Timofeyev Y.M., Smyshlyaev S.P., Virolainen Y.A., Makarova M.V., Foka S.Ch. Comparison of CAMS data on CO2 with measurements in Peterhof // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 689–694.
11. Tu Q., Hase F., Blumenstock Th., Kivi R., Heikkinen P., Sha M.K., Raffalski U., Landgraf J., Lorente A., Borsdorff T., Chen H., Dietrich F., Chen Jia. Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 precursor satellite observations // Atmos. Meas. Tech.2020. V. 13. P. 4751–4771. DOI: 10.5194/amt-13-4751-2020.
12. Callewaert S., Zhou M., Langerock B., Wang P., Wang T., Mahieu E., Mazière M. A WRF-Chem study of the greenhouse gas column and in situ surface concentrations observed at Xianghe, China. Part 1: Methane (CH4) // EGUsphere. 2025. V. 25, N 16. P. 9519–9544. DOI: 10.5194/acp-25-9519-2025.
13. Nerobelov G., Timofeyev Y., Smyshlyaev S., Foka S., Mammarella I., Virolainen Y. Validation of WRF-Chem Model and CAMS performance in estimating near-surface atmospheric CO2 mixing ratio in the area of Saint Petersburg (Russia) // Atmosphere. 2021. V. 12, N 3. DOI: 10.3390/atmos12030387.
14. Bryazgin N.N., Yunak R.I. Temperatura vozdukha i osadki na Severnoi Zemle v period ablyatsii i akkumulyatsii. Geograficheskie i glyatsiologicheskie issledovaniya v polyarnykh stranakh. L.: Gidrometeoizdat, 1988. P. 70–81.
15. Issledovanie prirodnoi sredy vysokoshirotnoi Arktiki na NIS «Ledovaya baza Mys Baranova» // pod red. d-ra fiz.-mat. nauk A.P. Makshtasa i V.T. Sokolova. SPb.: AANII, 2021. 260 p.
16. Govorukha L.S., Semenov I.V., Popova N.M., Shamont'eva L.A. Katalog lednikov SSSR. V. 16. Angaro-Eniseiskii raion, iss. 1: Enisei, pt. 1: Severnaya zemlya. L.: Gidrometeoizdat, 1980. 80 p.
17. Laurila T., Asmi E., Hatakka J., Kilkki J., Rainne J., Mäkelä T., Aurela M., Lihavainen H., Viisanen Y., Ivakhov V., Kondratyev V., Movchan V., Kustov V., Loskutova M., Makshtas A. On the recent increase of atmospheric methane concentrations as observed at three Arctic stations: Tiksi, Pallas and Ice Base Cape Baranova // Report series in Aerosol Sciences. N 201. Proc. of the 3rd Pan-Eurasian Experiment (PEEX) Conference and the 7th PEEX Meeting, September 2017. Helsinki, 2017. P. 247–250.
18. Laurila T. Data on Atmospheric Concentrations of CH4, CO and Meteorological Parameters at Baranova Site, Russia (Data set). Finnish Meteorological Institute, 2023. DOI: 10.23728/fmi.b2share.cd485d0c767d47d6b0028c 73620eca38.
19. Agusti-Panareda A., Barré J., Massart S., Inness A., Aben I., Ades M., Baier B.C., Balsamo G., Borsdorff T., Bousserez N., Boussetta S., Buchwitz M., Cantarello L., Crevoisier C., Engelen R., Eskes H., Flemming J., Garrigues S., Hasekamp O., Wu L. Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 // Atmos. Chem. Phys. 2023. V. 23. P. 3829–3859. DOI: 10.5194/acp-23-3829-2023.
20. AMAP Assessment 2015: Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2015. URL: https://www.amap.no/ documents/doc/amap-assessment-2015-methane-as-an-arctic-climate-forcer/1285 (last access: 17.05.2025).
21. Ivakhov V.M., Paramonova N.N., Privalov V.I., Zinchenko A.V. Analiz dannykh nepreryvnyi nablyudenii atmosfernykh kontsentratsii metana na arkticheskoi stantsii Tiksi s 2010 po 2015 year // Tr. GGO im. A.I. Voeikova. 2016. Iss. 582. P. 261–280.