Solar thermal tides have a significant impact on global atmospheric circulation, making it important to study the various external factors that can influence their generation and propagation throughout the atmosphere. Using the mechanistic nonlinear numerical general circulation model of the middle and upper atmosphere (MUAM), this paper examines the influence of solar activity (SA) variations on the spatiotemporal structure of tides. Two ensembles of MUAM simulations of the global atmospheric circulation in January are considered, each consisting of 16 runs, corresponding to high and low SA. It is shown that with increasing solar forcing at high SA, the diurnal migrating tide (DW1) weakens in the altitude range 100–150 km and intensifies at higher altitudes. The analysis of the Eliassen–Palm (EP) fluxes demonstrates a significant correlation between changes in the vertical propagation of wave activity and the amplitude of DW1: downward flux increments generally correspond to tide weakening in the range 110–150 km, while upward flux increments correspond to strengthening of the tide above 150 km. The semidiurnal migrating tide (SW2) weakens at high SA at altitudes of up to 140 km in the Southern Hemisphere and 190 km in the Northern Hemisphere in the mid- and high-latitude thermosphere. This is accompanied by mainly weakening of the ascending EP fluxes. Above 200 km, SW2 amplitude in the Northern Hemisphere increases by a factor of 2–3 at high SA. Above 150 km in the thermosphere, the amplitude of the stationary planetary wave with zonal number 1 (SPW1) decreases at high SA, while the amplitude of the migrating tides increases. Taken together, this leads to a complex structure of changes in the amplitudes of non-migrating tides. As an important link in the dynamic relationship between atmospheric layers, tides, in particular, provide the distribution of the effect of changing solar forcing during varying solar activity across all atmospheric layers. Understanding the complex mechanisms of dynamic interactions between tides and atmospheric circulation is important for improving numerical forecasts of changes in atmospheric processes on various time scales, from days to decades.
atmospheric tide, migrating and non-migrating tides, solar activity, wave activity, global atmospheric circulation, numerical simutation
1. Forbes J.M. Atmospheric tides: 1. Model description and results for the solar diurnal component // J. Geophys. Res. Space Phys. 1982. V. 87. P. 5222–5240. DOI: 10.1029/JA087iA07p05222.
2. Forbes J.M. Atmospheric tide: 2. The solar and lunar semidiurnal components // J. Geophys. Res. Space Phys. 1982. V. 87. P. 5241–5252. DOI: 10.1029/JA087iA07p05241.
3. Forbes J.M., Zhang X., Ward W., Talaat E.R. Climatological features of mesosphere and lower thermosphere stationary planetary waves within ± 40° latitude // J. Geophys. Res. 2002. V. 107, N D17. P. 4322. DOI: 10.1029/2001JD001232.
4. Forbes J.M., Zhang X., Palo S., Russell J., Mertens C.J., Mlynczak M. Tidal variability in the ionospheric dynamo region // J. Geophys. Res. Space Phys. 2008. V. 113, N A02310. DOI: 10.1029/2007JA012737.
5. Forbes J.M., Zhang X., Maute A. Planetary wave (PW) generation in the thermosphere driven by the PW-modulated tidal spectrum // J. Geophys. Res. Space Phys. 2020. V. 125. P. e2019JA027704. DOI: 10.1029/2019JA027704.
6. Gerber E.P., Butler A., Calvo N., Charlton-Perez A., Giorgetta M., Manzini E., Perlwitz J., Polvani L.M., Sassi F., Scaife A.A., Shaw T.A., Son S.-W., Watanabe Sh. Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system // Bull. Am. Meteorol. Soc. 2012. V. 93. P. 845–859. DOI: 10.1175/BAMS-D-11-00145.1.
7. Hagan M.E., Forbes J.M., Vial F. On modeling migrating solar tides // Geophys. Res. Lett. 1995. V. 22. P. 893–896. DOI: 10.1029/95GL00783.
8. Hagan M.E., Burrage M.D., Forbes J.M., Hackney J., Randel W.J., Zhang X. GSWM-98: Results for migrating solar tides // J. Geophys. Res. 1999. V. 104, N A4. P. 6813–6827. DOI: 10.1029/1998JA900125.
9. Jacobi C., Portnyagin Y., Solovjova T., Hoffmann P., Singer W., Fahrutdinova A., Ishmuratov R., Beard A., Mitchell N., Muller H., Schminder R., Kürschner D., Manson A., Meek C. Climatology of the semidiurnal tide at 52–56° N from ground-based radar wind measurements 1985–1995 // J. Atmos. Sol.-Terr. Phys. 1999. V. 61. P. 975–991. DOI: 10.1016/S1364-6826(99)00065-6.
10. Medvedeva I.V., Semenov A.I., Pogoreltsev A.I., Tatarnikov A.V. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations // J. Atmos. Sol.-Terr. Phys. 2019. V. 187. P. 22–32. DOI: 10.1016/j.jastp.2019.02.005.
11. Mukhtarov P., Pancheva D., Andonov B. Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002–2007) // J. Geophys. Res. 2010. V. 115, N A06315. DOI: 10.1029/2009JA015156.
12. Pancheva D., Mitchell N., Hagan M., Manson A., Meek C., Luo Y., Jacobi C., Kürschner D., Clark R., Hocking W., MacDougall J., Jones G., Vincent R., Reid I., Singer W., Igarashi K., Fraser G., Nakamura T., Tsuda T., Portnyagin Y., Merzlyakov E., Fahrutdinova A., Stepanov A., Poole L., Malinga S., Kashcheyev B., Oleynikov A., Riggin D. Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June–August 1999 and comparisons with the global-scale wave model // J. Atmos. Sol.-Terr. Phys. 2002. V. 64. P. 1011–1035. DOI: 10.1016/S1364-6826(02)00054-8.
13. Pancheva D., Mukhtarov P., Andonov B. Global structure, seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007) // Adv. Space Res. 2010. V. 46, N 3. P. 257–274. DOI: 10.1016/j.asr.2010.03.026.
14. Pancheva D., Mukhtarov P., Hall C., Meek C., Tsutsumi M., Pedatella N., Nozawa S. Climatology of the main (24-h and 12-h) tides observed by meteor radars at Svalbard and Tromsø: Comparison with the models CMAM-DAS and WACCM-X // J. Atmos. Sol.-Terr. Phys. 2020. V. 207. P. 105339. DOI: 10.1016/j.jastp.2020.105339.
15. Pancheva D., Mukhtarov P., Bojilova R. Climatology of the nonmigrating tides based on long-term SABER/TIMED measurements and their impact on the longitudinal structures observed in the ionosphere // Atmosphere. 2024. V. 15, N 4. P. 478. DOI: 10.3390/atmos15040478.
16. Smith A.K. Global dynamics of the MLT // Surv. Geophys. 2012. V. 33. P. 1177–1230. DOI: 10.1007/s10712-012-9196-9.
17. Andrews D.G., Holton J.R., Leovy C.B. Middle Atmosphere Dynamics. New York: Academic Press, 1987. 489 p.
18. Vitharana A., Du J., Zhu X., Oberheide J., Ward W.E. Numerical prediction of the migrating diurnal tide total variability in the mesosphere and lower thermosphere // J. Geophys. Res.: Space Phys. 2021. V. 126. DOI: 10.1029/2021JA029588.
19. Pancheva D., Mukhtarov P., Andonov B. Global structure, seasonal and inter-annual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007) // Ann. Geophys. 2009. V. 27. P. 687–703. DOI: 10.5194/angeo-27-687-2009.
20. Geißler Ch., Jacobi Ch., Lilienthal F. Forcing mechanisms of the migrating quarterdiurnal tide // Ann. Geophys. 2020. V. 38. P. 527–544. DOI: 10.5194/angeo-38-527-2020.
21. Forbes J.M., Zhang X., Ward W., Talaat E.R. Nonmigrating diurnal tides in the thermosphere // J. Geophys. Res. 2003. V. 108, N A1. DOI: 10.1029/2002JA009262.
22. Hagan M.E., Forbes J.M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release // J. Geophys. Res. 2002. V. 107, N D24. DOI: 10.1029/2001JD001236.
23. Hagan M.E., Forbes J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release // J. Geophys. Res. 2003. V. 108, N A2. DOI: 10.1029/2002JA009466.
24. Oberheide J., Hagan M.E., Roble R.G., Offermann D. Sources of nonmigrating tides in the tropical middle atmosphere // J. Geophys. Res. 2002. V. 107, N D21. DOI: 10.1029/2002JD002220.
25. Talaat E.R., Lieberman R.S. Nonmigrating diurnal tides in mesospheric and lower-thermospheric winds and temperatures // J. Atmos. Sci. 1999. V. 56, N 24. P. 4073–4087. DOI: 10.1175/1520-0469(1999)056<4073:NDTIMA>2.0.CO;2.
26. Angelatsi Coll M., Forbes J.M. Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides // J. Geophys. Res. 2002. V. 107, N A8. DOI: 10.1029/2001JA900179.
27. Hagan M.E., Roble R.G. Modeling diurnal tidal variability with the NCAR TIME-GCM // J. Geophys. Res. 2001. V. 106, N A11. P. 24869–24882. DOI: 10.1029/2001JA000057.
28. Hibbins R.E., Espy P.J., Jarvis M.J. Quasi-biennial modulation of the semidiurnal tide in the upper mesosphere above Halley, Antarctica // Geophys. Res. Lett. 2007. V. 34. DOI: 10.1029/2007GL031282.
29. Didenko K.A., Pogoreltsev A.I., Koval A.V., Ermakova T.S. Investigation of solar thermal tides using model data // Proc. SPIE. 2021. V. 11916. P. 1191687. DOI: 10.1117/12.2603432.
30. Xu J., Smith A.K., Liu M., Liu X., Gao H., Jiang G., Yuan W. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere // J. Geophys. Res. Atmos. 2014. V. 119. P. 471–489. DOI: 10.1002/2013JD020150.
31. Laštovicka J. Forcing of the ionosphere by waves from below // J. Atmos. Sol.-Terr. Phys. 2006. V. 68, N 3. P. 479–497. DOI: 10.1016/j.jastp.2005.01.018.
32. Koval A.V., Gavrilov N.M., Kandieva K.K., Ermakova T.S., Didenko K.A. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Sci. Rep. 2022. V. 12. DOI: 10.1038/s41598-022-26311-x.
33. Koval A.V., Gavrilov N.M., Pogoreltsev A.I., Shevchuk N.O. Influence of solar activity on penetration of traveling planetary-scale waves from the troposphere into the thermosphere // J. Geophys. Res. Space Phys. 2018. V. 123, N 8. P. 6888–6903. DOI: 10.1029/2018JA025680.
34. Koval A.V., Gavrilov N.M., Pogoreltsev A.I., Shevchuk N.O. Reactions of the middle atmosphere circulation and stationary planetary waves on the solar activity effects in the thermosphere // J. Geophys. Res. Space Phys. 2019. V. 124. P. 10645–10658. DOI: 10.1029/2019JA027392.
35. Koval A.V., Gavrilov N.M., Didenko K.A., Ermakova T.S., Savenkova E.N. Sensitivity of the 4–10-day planetary wave structures in the middle atmosphere to the solar activity effects in the thermosphere // Atmosphere. 2022. V. 13, N 1325. DOI: 10.3390/atmos13081325.
36. Koval A.V., Didenko K.A., Ermakova T.S., Gavrilov N.M., Golovko A.G. Diagnostics of the solar activity influence on the global atmospheric circulation in the thermosphere and MLT area: Wave – mean flow interaction effects // Clim. Dyn. 2025. V. 63, N 19. DOI: 10.1007/s00382-024-07490-x.
37. Koval A.V., Toptunova O.N., Motsakov M.A., Didenko K.A., Ermakova T.S., Gavrilov N.M., Rozanov E.V. Numerical modelling of relative contribution of planetary waves to the atmospheric circulation // Atmos. Chem. Phys. 2023. V. 23. P. 4105–4114. DOI: 10.5194/acp-23-4105-2023.
38. Koval A.V., Didenko K.A., Ermakova T.S., Gavrilov N.M., Sokolov A.V. Changes in general circulation of the middle and upper atmosphere associated with main and transitional QBO phases // Adv. Space Res. 2024. V. 74, N 10. P. 4793–4808. DOI: 10.1016/j.asr.2024.07.037.
39. Pogoreltsev A.I., Vlasov A.A., Fröhlich K., Jacobi Ch. Planetary waves in coupling the lower and upper atmosphere // J. Atmos. Sol.-Terr. Phys. 2007. V. 69. P. 2083–2101. DOI: 10.1016/j.jastp.2007.05.014.
40. Balogh A., Hudson H.S., Petrovay K., von Steiger R. Introduction to the solar activity cycle: Overview of causes and consequences // Space Sci. Rev. 2014. V. 186. P. 1–15. DOI: 10.1007/s11214-014-0121-z.
41. Xiao C., Hu X., Tian J. Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER // J. Geophys. Res. 2009. V. 114, N D17101. DOI: 10.1029/2008JD011349.
42. Didenko K.A., Koval A.V., Ermakova T.S., Sokolov A.V., Toptunova O.N. Analysis of a secondary 16-day planetary wave generation through nonlinear interactions in the atmosphere // Earth Planets Space. 2024. V. 76. 124. DOI: 10.1186/s40623-024-02072-x.
43. Koval A.V. Statisticheski znachimye otsenki vliyaniya solnechnoi aktivnosti na planetarnye volny v srednei atmosfere Severnogo polushariya po dannym modeli MSVA // Solnechno-zemnaya fizika. 2019. V. 5, N 4. P. 64–72. DOI: 10.12737/szf-54201907.
44. Lilienthal F., Jacobi C., Geißler C. Forcing mechanisms of the terdiurnal tide // Atmos. Chem. Phys. 2018. V. 18. P. 15725–15742. DOI: 10.5194/acp-18-15725-2018.
45. Lilienthal F., Jacobi C. Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation // Ann. Geophys. 2019. V. 37. P. 943–953. DOI: 10.5194/angeo-37-943-2019.
46. Suvorova E.V., Pogorel'tsev A.I. Modelirovanie nemigriruyushchikh prilivov v srednei atmosfere // Geomagnetizm i aeronomiya. 2011. V. 51, N 1. P. 107–118.
47. Jucker M. Scaling of Eliassen–Palm flux vectors // Atmos. Sci. Lett. 2021. V. 22. DOI: 10.1002/asl.1020.
48. Kodera K., Mukougawa H., Itoh S. Tropospheric impact of reflected planetary waves from the stratosphere // Geophys. Res. Lett. 2008. V. 35. DOI: 10.1029/2008GL034575.
49. Jin H., Miyoshi Y., Pancheva D., Mukhtarov P., Fujiwara H., Shinagawa H. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere–ionosphere model GAIA with COSMIC and TIMED/SABER observations // J. Geophys. Res. 2012. V. 117, N A10323. DOI: 10.1029/2012JA017650.
50. Singh D., Gurubaran S. Variability of diurnal tide in the MLT region over Tirunelveli (8.7° N), India: Consistency between ground- and space-based observations // J. Geophys. Res. Atmos. 2017. V. 122. P. 2696–2713. DOI: 10.1002/2016JD025910.
51. Wu C., Ridley A.J., Cullens C.Y. Seasonal dependency of the solar cycle, QBO, and ENSO effects on the interannual variability of the wind DW1 in the MLT region // J. Geophys. Res.: Space Phys. 2024. V. 129. DOI: 10.1029/2024JA032472.
52. Pedatella N.M., Liu H.-L. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere // J. Geophys. Res. Space Phys. 2013. V. 118. P. 5333–5347. DOI: 10.1002/jgra.50492.
53. He M., Forbes J.M., Chau J.L., Li G., Wan W., Korotyshkin D.V. High-order solar migrating tides quench at SSW onsets // Geophys. Res. Lett. 2020. V. 47. DOI: 10.1029/2019GL086778.
54. Liu Y., Xu J., Smith A.K., Liu X. Seasonal and interannual variations of global tides in the mesosphere and lower thermosphere neutral winds: I. Diurnal tides // J. Geophys. Res. Space Phys. 2024. V. 129. DOI: 10.1029/2023JA031887.
55. Liu Y., Xu J., Smith A.K., Liu X. Seasonal and interannual variations of global tides in the mesosphere and lower thermosphere neutral winds: II. Semidiurnal and terdiurnal tides // J. Geophys. Res. Space Phys. 2024. V. 129. DOI: 10.1029/2023JA031846.
56. Jin H., Miyoshi Y., Fujiwara H., Shinagawa H. Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure // J. Geophys. Res. 2008. V. 113, N A09307. DOI: 10.1029/2008JA013301.
57. Li X., Wan W.X., Cao J.B., Ren Z.P. The source of tropospheric tides // Earth Planet. Phys. 2020. V. 4, N 5. P. 449–460. DOI: 10.26464/epp2020049.
58. Zhou Y.-L., Wang L., Xiong C., Lühr H., Ma S.-Y. The solar activity dependence of nonmigrating tides in electron density at low and middle latitudes observed by CHAMP and GRACE // Ann. Geophys. 2016. V. 34. P. 463–472. DOI: 10.5194/angeo-34-463-2016.