Vol. 39, issue 02, article # 5

Luzhetskaya A. P., Nagovitsyna E. S., Poddubnyi V. A., Karasev A. A. Potential sources of various types of atmospheric aerosol arriving to the Middle Urals. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 124–128. DOI: 10.15372/AOO20260205 [in Russian].
Copy the reference to clipboard
Abstract:

A detailed study of the spatial distribution of aerosol sources is essential for understanding their impact on air quality and public health. The source fields of various atmospheric aerosol types arriving to the Middle Urals were estimated with the use of the analysis of the potential source contribution function. The initial data comprised information on the aerosol type obtained through the classification of aerosol particles based on the spectral values of atmospheric aerosol optical depth. The results demonstrate a clear spatial differentiation of atmospheric aerosol sources for the classes “dust” and “elevated smoke”. The proposed approach can significantly enhance the information provided by spectral ground-based photometric measurements, thus improving the accuracy of air quality assessments.

Keywords:

atmospheric monitoring, aerosol, backward trajectories, Middle Urals

References:

1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2021. DOI: 10.1017/9781009157896.
2. Kim K.H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter // Environ. Intern. 2015. V. 74. P. 136–143. DOI: 10.1016/j.envint.2014.10.005.
3. Ashbaugh L.L. A Statistical trajectory technique for determining air pollution source regions // J. Air Pollut. Control Ass. 1983. V. 33, N 11. P. 1096–1098. DOI: 10.1080/00022470.1983.10465702.
4. Seibert P., Kromp-Kolb H., Baltensperger U., Jost D.T., Schwikowski M. Trajectory analysis of aerosol measurements at high Alpine sites // Transport and Transformation of Pollutants in the Troposphere. Den Haag: Academic Publ., 1994. P. 689–693.
5. Stohl A. Trajectory statistics – a new method to establish source-reseptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe // Atmos. Environ. 1996. V. 30, N 4. P. 579–587. DOI: 10.1016/1352-2310(95)00314-2.
6. Poddubnyi V.A., Nagovitsyna E.S. Vosstanovlenie prostranstvennogo polya kontsentratsii atmosfernogo aerozolya po dannym lokal'nykh izmerenii: modifikatsiya metoda statistiki obratnykh traektorii // Izv. RAN. Fizika atmosf. i okeana. 2013. V. 49, N 4. P. 439–446. DOI: 10.7868/S000235151304007X.
7. Vlasenko S.S., Mikhailova A.S., Ivanova O.A., Nebosko E.Yu., Mikhailov E.F., Ryshkevich T.I. Prostranstvennoe raspredelenie potentsial'nykh istochnikov uglerodsoderzhashchikh aerozolei v TSentral'noi Sibiri // Optika atmosf. i okeana. 2024. V. 37, N 2. P. 114–120. DOI: 10.15372/AOO20240204; Vlasenko S.S., Mikhailova A.S., Ivanova O.A., Nebosko E.Yu., Mikhailov E.F., Ryshkevich T.I. Spatial distribution of potential sources of carbonaceous aerosols in Central Siberia // Atmos. Ocean. Opt. 2024. V. 37, N 3. P. 309–314.
8. Heintzenberg J., Leck C., Tunved P. Potential source regions and processes of aerosol in the summer Arctic // Atmos. Chem. Phys. 2015. V. 15, N 11. P. 6487–6502. DOI: 10.5194/acp-15-6487–2015.
9. Nogarotto D.C., Gimbernau J., Pozza S.A. PSCF method for source identification of particulate matter in an agricultural background region in Brazil // Environ. Technol. 2024. P. 1–15. DOI: 10.1080/09593330.2024.2334292.
10. Crocchianti S., Moroni B., Waldhauserová P.D., Becagli S., Severi M., Traversi R., Cappelletti D. Potential source contribution function analysis of high latitude dust sources over the Arctic: Preliminary results and prospects // Atmosphere. 2021. V. 12, N 3. DOI: 10.3390/atmos12030347.
11. Li H., He Q., Liu X. Identification of long-range transport pathways and potential source regions of PM2.5 and PM10 at Akedala Station, Central Asia // Atmosphere. 2020. V. 11, N 11. DOI: 10.3390/atmos11111183.
12. Vivchar A.V., Moiseenko K.B., Shumskii R.A., Skorokhod A.I. Identifikatsiya antropogennykh istochnikov emissii okislov azota po raschetam lagranzhevykh traektorii i dannym nablyudenii na vysotnoi machte v Sibiri spring–summer 2007 year // Izv. RAN. Fizika atmosf. i okeana. 2009. V. 45, N 3. P. 325–336.
13. Wotawa G., Kröger H., Stohl A. Horizontal ozone transport towards the Alps – results from trajectory analyses and photochemical model studies // Atmos. Environ. 2000. V. 34, N 7. P. 1367–1377.
14. Bonasoni P., Stohl A., Cristofanelli P., Calzolari F., Colombo T., Evangelisti F. Background ozone variations at Mt. Cimone station // Atmos. Environ. 2000. V. 34, N 29–30. P. 5183–5189. DOI: 10.1016/S1352-2310(00) 00268-5.
15. Poddubnyi V.A., Nagovitsyna E.S., Markelov Yu.I., Buevich A.G., Antonov K.L., Omel'kova E.V., Manzhurov I.L. Otsenka prostranstvennogo raspredeleniya kontsentratsii metana v raione Barentseva i Karskogo morei v letnii period 2016–2017 years // Meteorol. i gidrol. 2020. N 3. P. 77–86.
16. Kabashnikov V.P., Kuz'min V.N., Petruchuk A., Sobolevskii P., Chaikovskii A.P. Vyyavlenie istochnikov aerozol'nogo zagryazneniya atmosfery na osnove dannykh distantsionnogo zondirovaniya i statistiki obratnykh traektorii // Optika atmosf. i okeana. 2008. V. 21, N 1. P. 48–52.
17. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakadjima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – A federated instrument network and data archive for aerosol characterization // Rem. Sens. Environ. 1998. V. 66, N 1. P. 1–16. DOI: 10.1016/S0034-4257(98)00031-5.
18. Nagovitsyna E.S., Dzholumbetov S.K., Karasev A.A., Poddubny V.A. A regional aerosol model for the Middle Urals based on CALIPSO measurements // Atmosphere. 2024. V. 15, N 1. DOI: 10.3390/atmos15010048.
19. Luzhetskaya A.P., Nagovitsyna E.S., Poddubny V.A. Impact of meteorological parameters on the daily variability of the ground-level PM2.5 concentrations according to measurements in the Middle Urals // Geography, Environ., Sustain. 2023. V. 16, N 4. P. 172–179. DOI: 10.24057/2071-9388-2023-2824.
20. Kleist D.T., Parrish D.F., Derber J.C., Treadon R., Wan-Shu W., Lord S. Introduction of the GSI into the NCEP global data assimilation system // Weather Forecast. 2009. V. 24, N 6. P. 1691–1705. DOI: 10.1175/2009WAF2222201.1.
21. Nagovitsyna E.S., Luzhetskaya A.P., Poddubny V.A. Klassifikatsiya tipov atmosfernogo aerozolya na osnove fotometricheskikh izmerenii i empiricheskoi regional'noi modeli MUrA // Optika atmosf. i okeana. 2025. V. 38, N 2. P. 93–98. DOI: 10.15372/AOO20250202; Nagovitsyna E.S., Luzhetskaya A.P., Poddubny V.A. Classification of atmospheric aerosols based on photometric measurements and empirical regional model MUrA // Atmos. Ocean. Opt. 2025. V. 38, N 3. P. 259–265. DOI: 10.1134/S1024856025700046.
22. Omar A.H., Won J.-G., Winker D.M., Yoon S.C., Dubovik O., McCormick M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements // J. Geophys. Res. 2005. V. 110. P. D10S14. DOI: 10.1029/2004JD004874.
23. Sitnov S.A., Mokhov I.I., Gorchakov G.I. Svyaz' zadymleniya atmosfery evropeiskoi territorii Rossii letom 2016 goda s lesnymi pozharami v Sibiri i anomaliyami atmosfernoi tsirkulyatsii // Dokl. RAN. 2017. V. 472, N 4. P. 456–461. DOI: 10.7868/S0869565217040181.
24. Panchenko M.V., Zhuravleva T.B., Kozlov V.S., Nasrtdinov I.M., Pol’kin V.V., Terpugova S.A., Chernov D.G. Otsenka radiatsionnyh effektov aerozolya v fonovyh i zadymlennyh usloviyah atmosfery Sibiri na osnove empiricheskih dannyh // Meteorol. i Hydrol. 2016. N 2. P. 45–54.
25. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10, N 1. P. 179–198. DOI: amt-10-179-2017.