Monitoring and analysing the dynamics of ionospheric parameters allow one to detect disturbances that negatively impact technical systems. Problems of the timely detection of ionospheric disturbances are associated with a high degree of uncertainty in our prior knowledge about the dynamics of ionospheric processes during disturbed periods and the influence of interference and uneven observation network in certain areas. These issues necessitate the development of data recording and analysis methods that guarantee high accuracy and efficiency. The paper presents a new automated method for estimating the state of the ionosphere using ground-based vertical radiosonde data. This method combines elements of statistical decision theory and threshold estimation with wavelet transform. Numerical solutions constructed using this method are used in the Aurora interactive system (https://lsaoperanalysis.ikir.ru/lsaoperanalysis.html), which was developed at the Institute of Cosmophysical Research and Radio Wave Propagation, Far Eastern Branch, Russian Academy of Sciences. The results of the implemented algorithms provide data on the state of the ionosphere over Kamchatka (calm or perturbed) and the parameters of ionospheric inhomogeneities in perturbed state. The algorithms are adaptive and do not require preliminary training. Data from the Paratunka (Russia, Kamchatka Region) and Wakkanai (Japan) stations were used to evaluate the method. The behaviour of the ionosphere during periods of strong geomagnetic storms in 2023–2024 was studied. The study confirmed the method efficiency in analysing ionospheric data and detecting inhomogeneities. Prior to the analysed events, signs of an anomalous increase in electron density in the ionosphere were identified. This is of significant practical importance. The suggested method can be used in ionospheric data analysis techniques for monitoring and forecasting space weather conditions, with the aim of timely detection of ionospheric disturbances.
data analysis method, ionosphere, space weather, magnetic storm
1. Tsagouri I. Space weather effects on the Earth’s upper atmosphere: Short report on ionospheric storm effects at middle latitudes // Atmosphere. 2022. V. 13. P. 346. DOI: 10.3390/atmos13020346.
2. Balan N., Yamamoto M., Liu J.Y., Otsuka Y., Liu H., Luhr H. New aspects of thermospheric and ionospheric storms revealed by CHAMP // J. Geophys. Res.: Space Phys. 2011. V. 16. P. A7. DOI: 10.1029/2010JA016399.
3. Nakamura M., Maruyama T., Shidama Y. Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan // J. Natl. Inst. Inf. Commun. Technol. 2009. V. 56. P. 391–406.
4. Priyadarshi S. A review of ionospheric scintillation models // Surv. Geophys. 2015. V. 36, N 2. P. 295–324. DOI: 10.1007/s10712-015-9319-1.
5. Demyanov V., Danilchuk E., Sergeeva M., Yasyukevich Y. An increase of GNSS data time rate and analysis of the carrier phase spectrum // Remote Sens. 2023. V. 15. P. 792. DOI: 10.3390/rs15030792.
6. Yasyukevich Yu.V., Vesnin A.M., Perevalova N.P. SibNet – Siberian Global Navigation Satellite System Network: Current state // Sol.-Terr. Phys. 2018. V. 4, N 4. P. 63–72. DOI: 10.12737/stp-44201809.
7. Danilov A.D. Obsuzhdenie problemy ionosfernyh predvestnikov magnitnyh bur' // Geomagnetizm i aeronomiya. 2022. V. 62, N 1. P. 97–105. DOI: 10.31857/S0016794022010047.
8. Ratovskii K.G., Klimenko M.V., Yasyukevich Yu.V., Vesnin A.M., Klimenko V.V. Statisticheskii analiz ionosfernogo otklika na geomagnitnye buri s ispol'zovaniem dannyh global'nyh ionosfernyh kart // Himicheskaya fizika. 2020. V. 39, N 10. P. 57–68. DOI: 10.31857/S0207401X20100106.
9. Perevalova N.P., Ratovsky K.G., Zherebtsov G.A., Yasyukevich A.S. Korrelyatsiya korotkoperiodnykh volnovykh vozmushchenii maksimal'noi elektronnoi kontsentratsii v sloe F2 i polnogo elektronnogo soderzhaniya v ionosfere // Doklady Rossiiskoi akademii nauk. Nauki o Zemle. 2023. V. 513, N 1. P. 120–125. DOI: 10.31857/S2686739723601709.
10. Ratovsky K.G., Klimenko M.V., Dmitriev A.V., Medvedeva I.V. Relation of extreme ionospheric events with geomagnetic and meteorological activity // Atmosphere. 2022. V. 13. P. 146. DOI: 10.3390/atmos13010146.
11. Pashintsev V.P., Peskov M.V., Senokosov M.A., Mikhailov D.A., Skorik A.D. A system for measuring the scintillation index based on the results of monitoring of small-scale fluctuations in the total electron content of the ionosphere // GPS Solut. 2024. V. 28. P. 13. DOI: 10.1007/s10291-023-01550-1.
12. Bychkov V.V., Seredkin I.N., Marichev V.N. Rasseyanie na vozbuzhdennyh ionah kak prichina registratsii mnimogo aerozolya v srednei atmosfere // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 867–873. DOI: 10.15372/AOO20201107; Bychkov V.V., Seredkin I.N., Marichev V.N. Scattering on excited ions as a reason for detecting imaginary aerosols in the middle atmosphere // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 104–110.
13. Ghoddousi-Fard R. Impact of receiver and constellation on high rate GNSS phase rate measurements to monitor ionospheric irregularities // Adv. Space Res. 2017. V. 60, N 9. P. 1968–1977. DOI: 10.1016/j.asr.2017. 07.039.
14. Qiongqiong J., Renbiao W., Wenyi W., Dan L., Lu W., Jie L. Multipath interference mitigation in GNSS via WRELAX // GPS Solutions. 2017. V. 21. P. 487–498. DOI: 10.1007/ s10291-016-0538-9.
15. Pulinets M.S., Budnikov P.A., Pulinets S.A. Global'nyi otklik ionosfery na intensivnye variatsii solnechnoi i geomagnitnoi aktivnosti po dannym global'noi seti navigatsionnyh priemnikov GNSS // Geomagnetizm i aeronomiya. 2023. V. 63, N 2. P. 202–215.
16. Institut kosmicheskih issledovanii Rossiiskoi akademii nauk. M., 2025. URL: https://iki.cosmos.ru/research/missions/ionozond (data obrashcheniya: 10.06.2025).
17. McCaffrey A.M., Jayachandran P.T. Spectral characteristics of auroral region scintillation using 100 Hz sampling // GPS Solutions. 2017. V. 21. P. 1883–1894. DOI: 10.1007/s10291-017-0664-z.
18. Zhang Q., Niu X., Shi C. Assessment of the effect of GNSS sampling rate on GNSS/INS relative accuracy on different time scales for precision measurements // Measurement. 2019. V. 145. P. 583–593. DOI: 10.1016/j.measurement.2019.05.104.
19. Bolla P., Borre K. Performance analysis of dual-frequency receiver using combinations of GPS L1, L5, and L2 civil signals // J. Geodesy. 2018. V. 93. P. 437–447. DOI: 10.1007/s00190-018-1172-9.
20. Lin X., Wang H., Zhang Q., Yao C., Chen C., Cheng L., Li Z. A spatiotemporal network model for global ionospheric TEC forecasting // Remote Sens. 2022. V. 14. P. 1717. DOI: 10.3390/rs14071717.
21. Salimov B.G., Yasyukevich Y.V., Vesnin A.M., Bykov A.E., Zhang B., Ratnam D.V. Machine learning total electron content models based on F10.7 // Adv. Space Res. 2025. V. 76, N 1. P. 317–330. DOI: 10.1016/j.asr.2025.04.038.
22. Kryukovskii A.S., Lukin D.S., Mihaleva E.V., Palkin E.A., Rastyagaev D.V. Matematicheskoe modelirovanie vliyaniya neodnorodnostei ionosfery Zemli na rasprostranenie elektromagnitnyh voln // Radiotehnika i elektronika. 2024. V. 69, N 6. P. 501–512. DOI: 10.31857/S0033849424060017.
23. Mandrikova O., Fetisova N., Polozov Y. Hybrid model for time series of complex structure with ARIMA components // Mathematics. 2021. V. 9. P. 1122. DOI: 10.3390/math9101122.
24. Mandrikova O., Polozov Y. Complex approach to the detection of ionospheric anomalies based on ionospheric foF2 critical frequency data // Proc. SPIE. 2023. V. 12780. P. 127807J. DOI: 10.1117/12.2690918.
25. Polozov Yu.A., Mandrikova O.V. Analiz variatsii geomagnitnogo polya po rezul'tatam interaktivnoi sistemy «Avrora» // Vestn. KRAUNTS. Fiz.-mat. nauki. 2024. V. 49, N 4. P. 112–124. DOI: 10.26117/2079-6641-2024-49-4-112-124.
26. Mandrikova O., Fetisova N. Modeling and analysis of ionospheric parameters based on multicomponent model // J. Atmos. Solar-Terr. Phys. 2020. V. 208. P. 105399. DOI: 10.1016/j.jastp.2020.105399.
27. Mandrikova O., Polozov Yu., Fetisova N., Zalyaev T. Analysis of the dynamics of ionospheric parameters during periods of increased solar activity and magnetic storms // J. Atmos. Solar-Terr. Phys. 2018. V. 181. P. 116–126. DOI: 10.1016/j. jastp.2018.10.019.
28. Mallat S. A wavelet tour of signal processing: The sparse way. Boston: Academic Press, 2009. 805 p.
29. Berger J.O. Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag, 2010. 618 p.
30. Danilov A.D., Konstantinova A.V. Ionospheric precursors of geomagnetic storms. 1. A review of the problem // Geomagn. Aeron. 2019. V. 59. P. 554–566. DOI: 10.1134/S0016793219050025.
31. Tsurutani B.T., Verkhoglyadova O.P., Mannucci A.J., Saito A., Araki T., Yumoto K., Tsuda T., Abdu M.A., Sobral J.H.A., Gonzalez W.D., McCreadie H., Lakhina G.S., Vasyliūnas V.M. Prompt Penetration Electric Fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003 // J. Geophys. Res. 2008. V. 113, iss. A5. DOI: 10.1029/2007JA012879.