Исследована структура движений воздуха в крупных специализированных помещениях астрономических телескопов. В таких помещениях конструктивно размещены оптические элементы крупноапертурных телескопов. Исследования проведены путем численного решения нескольких краевых задач для уравнений гидродинамики (уравнений Навье–Стокса). Основное внимание уделено закрытым помещениям с разным нагревом нижних и верхних поверхностей, без обмена веществом среды через границы. Это дает возможность тестирования в стационарных условиях оптических характеристик астрономических телескопов, включая их разрешающую способность. В частности, визуализация движений воздуха линиями тока позволяет выполнить анализ влияния конструктивных особенностей телескопа и температурного режима его оптических элементов на устойчивость воздушной среды.
Результаты численных расчетов показывают, что в специализированных помещениях наблюдаются уединенные крупные вихри (когерентные структуры, топологические солитоны). Каскадный распад этих вихрей порождает когерентную турбулентность. Подтверждается также сформулированный нами ранее экспериментальный вывод, что смешивание когерентных структур с разными близкими размерами (и с близкими частотами главных вихрей) дает некогерентную колмогоровскую турбулентность.
турбулентность, когерентная турбулентность, когерентная структура, топологический солитон, численное моделирование когерентных структур, уравнения гидродинамики, уравнения Навье–Стокса, топологический предвестник
1. Носов В.В., Григорьев В.М., Ковадло П.Г., Лукин В.П., Носов Е.В., Торгаев А.В. Астроклимат специализированных помещений Большого солнечного вакуумного телескопа. Ч. 1 // Оптика атмосф. и океана. 2007. Т. 20, № 11. С. 1013–1021; Ч. 2 // Оптика атмосф. и океана. 2008. Т. 21, № 3. С. 207–217.
2. Nosov V.V., Grigor’ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part 1 // Atmos. Ocean. Opt. 2007. V. 20, N 11. P. 926–934; Part 2 // Atmos. Ocean. Opt. 2008. V. 21, N 3. P. 180–190.
3. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part I // Proc. SPIE. 2007. V. 69360P. P. 1–11; Part II // Proc. SPIE. 2008. V. 69360Q. P. 1–12.
4. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory // Proc. SPIE. 2007. V. 69361R. P. 1–4.
5. Носов В.В., Григорьев В.М., Ковадло П.Г., Лукин В.П., Носов Е.В., Торгаев А.В. Когерентные структуры в турбулентной атмосфере. Эксперимент и теория // Солнечно-земная физика. 2009. Вып. 14. С. 97–113.
6. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in turbulent atmosphere // Proc. SPIE. 2009. V. 7296-09. P. 53–70.
7. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in the turbulent atmosphere // Mathematical Models of Non-linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere / Ed. by A.B. Nadycto et al. N.Y.: Nova Science Publishers, 2013. Ch. 20. P. 297–330.
8. Носов В.В., Ковадло П.Г., Лукин В.П., Торгаев А.В. Атмосферная когерентная турбулентность // Оптика атмосф. и океана. 2012. Т. 25, № 9. С. 753–759.
9. Nosov V.V., Lukin V.P., Torgaev A.V., Kovadlo P.G. Atmospheric coherent turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
10. Носов В.В., Лукин В.П., Торгаев А.В. Когерентные структуры в атмосфере, возникающие при обтекании препятствий // Мат-лы XVI Междунар. симпоз. «Оптика атмосферы и океана. Физика атмосферы». Томск: Изд-во ИОА СО РАН, 2009. С. 645–648.
11. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. The Solitonic Hydrodynamical Turbulence // Proc. VI Int. Conf. «Solitons Collapses and Turbulence: Achievements Developments and Perspectives». Novosibirsk, 2012. P. 108–109.
12. Носов В.В., Лукин В.П., Носов Е.В., Торгаев А.В. Моделирование когерентных структур (топологических солитонов) в закрытых помещениях путем численного решения уравнений гидродинамики // Оптика атмосф. и океана. 2015. Т. 28, № 2. С. 120–133.
13. Popinet S. The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2002–2014. URL: http://gfs.sf.net
14. Popinet S. 100 Gerris Tests. V. 1.3.2. URL: http://gerris.dalembert.upmc.fr/gerris/tests/tests/index.html; Gerris: Bibliography. URL: http://gfs.sf.net/wiki/index.php/ Bibliography; List of recent publications. URL: http:// gfs.sf.net/wiki/index.php/User:Popinet