Том 28, номер 09, статья № 9

pdf Коношонкин А. В., Кустова Н. В., Осипов В. А., Боровой А. Г., Masuda K., Ishimoto H., Okamoto H. Метод физической оптики для решения задачи рассеяния света на кристаллических ледяных частицах: сравнение дифракционных формул. // Оптика атмосферы и океана. 2015. Т. 28. № 09. С. 830-843. DOI: 10.15372/AOO20150909.
Скопировать ссылку в буфер обмена
Аннотация:

Рассматривается формулировка метода физической оптики, исходя из уравнений Максвелла. Показана эквивалентность различных определений метода физической оптики. Представлено подробное сравнение трех дифракционных формул, соответствующих E-, M- и (EM)-теориям дифракции. Установлено, что в случае дифракции на отверстии в плоском экране все три дифракционные формулы дают одинаковое сечение рассеяния для дифракционных углов вплоть до 60°, однако поляризационные элементы матрицы Мюллера существенно расходятся уже для углов порядка 15–30°. Также показано, что при дифракции на наклонном экране различие между E-, M- и (EM)-теориями дифракции проявляется тем сильнее, чем сильнее наклон экрана. Так, при наклоне экрана порядка 80° E-, M-теории дифракции применимы только для очень небольших (порядка 1°) дифракционных углов. Сравнение с точным решением, полученным методом FDTD, подтвердило, что различие между E-, M- и (EM)-теориями дифракции для дифракции на плоском экране не так существенно, однако для расчетов предпочтительнее использовать (EM)-теорию дифракции.

Ключевые слова:

физическая оптика, алгоритм трассировки пучков, рассеяние света, ледяные кристаллы, FDTD

Список литературы:


1. Borovoi A.G., Grishin I.A. Scattering matrices for large ice crystal particles // J. Opt. Soc. Amer. A. 2003. V. 20, N 11. P. 2071–2080.
2. Borovoi A.G. Light scattering by large particles: Physical optics and the shadowforming field / Ed. A.A. Kokhanovsky. Light scattering reviews. V. 8. Chichester: Springer-Praxis, 2013. P. 115–138.
3. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
4. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–1508.
5. Bi L., Yang P. Physical-geometric optics hybrid me-thods for computing the scattering and absorption properties of ice crystals and dust aerosols / Ed. A.A. Kokhanovsky. Light scattering reviews. V. 8. Chichester: Springer-Praxis, 2013. P. 69–114.
6. Nieto-Vesperinas M. Scattering and diffraction in physical optics. 2nd ed. New Jersey: World sci., 2006. 434 p.
7. Ishimaru A. Electromagnetic wave propagation, radiation, and scattering. London: Prentice Hall, 1990. 656 p.
8. Mandel L., Wolf E. A generalized extinction theorem and its role in scattering theory // Coherence and Quantum Optics. N.Y.: Plenum Press, 1973. P. 339–357.
9. Tai C.T. Direct integration of field equations // Prog. Electromagn. Res. 2000. V. 28. P. 339–359.
10. Tai C.T. Dyadic green functions in electromagnetic theory. 2nd ed. N.Y.: Institute of Electrical and Electronics Engineers, 1994. 343 p.
11. Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. 2. М.: Изд-во иностр. лит-ры, 1960. 897 с.
12. Franz V.W. Zur Formulierung des Huygensschen Prinzips // Zeitschrift für Naturforschung. A. 1948. V. 3, N 8–11. P. 500–506.
13. Зоммерфельд А. Оптика / пер. с нем. Н.В. Родниковой; под ред. М.А. Ельяшевича. М.: Изд-во иностр. лит-ры, 1953. 486 с.
14. Pattanayak D.N. Thesis. University of Rochester, 1973.
15. Pattanayak D.N., Wolf E. General form and a new interpretation of the Ewald–Oseen extinction theorem // Opt. Commun. 1972. V. 6, N 3. P. 217–220.
16. Jackson J.D. Classical electrodynamics. 3rd ed. N.Y.: John Wiley & Sons, 1998. 808 p.
17. Orfanidis S.J. Electromagnetic waves and antennas. New Jersey: Rutgers University, 2014. 1188 p. URL: www.ece.rutgers.edu/~orfanidi/ewa
18. Стрэттон Дж.А. Теория электромагнетизма. М.; Л.: Гостехтеоретиздат, 1948. 539 с.
19. Asvestas J.S. Diffraction by a black screen // J. Opt. Soc. Amer. 1975. V. 65, N 2. P. 155–158.
20. Kottler F. Diffraction at a black screen. Part 1: Kirchhoff's theory // Prog. Opt. 1965. V. 4. P. 281–314.
21. Kottler F. Diffraction at a black screen. Part II: Electromagnetic theory // Prog. Opt. 1967. V. 6. P. 331–377.
22. Щелкунов С.А., Фриис Х.Т. Антенны: теория и практика. М.: Сов. радио, 1955. 604 с.
23. Yang P., Liou K.N. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35, N 33. P. 6568–6584.
24. Ромашов Д.Н. Рассеяние света гексагональными ледяными кристаллами // Оптика атмосф. и океана. 2001. Т. 14, № 2. С. 116–124.
25. Karczewski B., Wolf E. Comparison of three theories of electromagnetic diffraction at an aperture. Part II: The far field // J. Opt. Soc. Amer. 1966. V. 56, N 9. P. 1214–1219.
26. Masuda K., Ishimoto H., Mano Y. Efficient method of computing a geometric optics integral for light scattering by nonspherical particles // Pap. Meteorol. Geophys. 2012. V. 63. P. 15–19.
27. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Алгоритм трассировки пучков для задачи рассеяния света на атмосферных ледяных кристаллах. Часть 1. Теоретические основы алгоритма // Оптика атмосф. и океана. 2015. Т. 28, № 4. С. 324–330.
28. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Алгоритм трассировки пучков для задачи рассеяния света на атмосферных ледяных кристаллах. Часть 2. Сравнение с алгоритмом трассировки лучей // Оптика атмосф. и океана. 2015. Т. 28, № 4. С. 331–337.
29. Алгоритм трассировки пучков. URL: https://github. com/sasha-tvo/Beam-Splitting. Branch:  physical-optics.
30. Borovoi A., Konoshonkin A., Kustova N. Backscattering reciprocity for large particles // Opt. Lett. 2013. V. 38, N 15. P. 1485–1487.
31. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 19. P. 2881–2884.
32. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Граница применимости приближения геометрической оптики для решения задачи обратного рассеяния света на квазигоризонтально ориентированных гексагональных ледяных пластинках // Оптика атмосф. и океана. 2014. Т. 27, № 8. С. 705–712.