Vol. 28, issue 09, article # 9

Konoshonkin A. V., Kustova N. V., Osipov V. A., Borovoy A. G., Masuda K., Ishimoto H., Okamoto H. Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction. // Optika Atmosfery i Okeana. 2015. V. 28. No. 09. P. 830-843. DOI: 10.15372/AOO20150909 [in Russian].
Copy the reference to clipboard

The formulation of the physical optics approximation based on Maxwell's equations has been considered. The equivalence of various definitions of physical optics approximation has been shown. A detailed comparison of the three diffraction formulas corresponding to E-, M- and (EM)-theories of diffraction has been provided. It was found that in the case of diffraction on a hole in the flat screen, all three formulas give the same diffraction scattering cross section for the diffraction angles up to 60°. The polarizing elements of the Mueller matrix in this case diverge significantly even for the angles of 15–30°. It is also shown that in the case of diffraction on the tilted screen, the difference between E-, M- and (EM)-theories of diffraction may be significant. So when the screen is tilted about 80° EM diffraction theory can be applied only to very small diffraction angle. The comparison of the results with the exact solution obtained by FDTD has confirmed that the difference between EM- and (EM) diffraction theories is not significant for the case of diffraction on the flat screen, but it is preferable to use the (EM) diffraction theory for calculations.


physical optics approximation, beam-splitting technique, light scattering, ice crystals, FDTD


  1. Borovoi A.G., Grishin I.A. Scattering matrices for large ice crystal particles // J. Opt. Soc. Amer. A. 2003. V. 20, N 11. P. 2071–2080.
  2. Borovoi A.G. Light scattering by large particles: Physical optics and the shadowforming field / Ed. A.A. Kokhanovsky. Light scattering reviews. V. 8. Chichester: Springer-Praxis, 2013. P. 115–138.
  3. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
  4. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–1508.
  5. Bi L., Yang P. Physical-geometric optics hybrid me-thods for computing the scattering and absorption properties of ice crystals and dust aerosols / Ed. A.A. Kokhanovsky. Light scattering reviews. V. 8. Chichester: Springer-Praxis, 2013. P. 69–114.
  6. Nieto-Vesperinas M. Scattering and diffraction in physical optics. 2nd ed. New Jersey: World sci., 2006. 434 p.
  7. Ishimaru A. Electromagnetic wave propagation, radiation, and scattering. London: Prentice Hall, 1990. 656 p.
  8. Mandel L., Wolf E. A generalized extinction theorem and its role in scattering theory // Coherence and Quantum Optics. N.Y.: Plenum Press, 1973. P. 339–357.
  9. Tai C.T. Direct integration of field equations // Prog. Electromagn. Res. 2000. V. 28. P. 339–359.
  10. Tai C.T. Dyadic green functions in electromagnetic theory. 2nd ed. N.Y.: Institute of Electrical and Electronics Engineers, 1994. 343 p.
  11. Mors F.M., Feshbah G. Metody teoreticheskoj fiziki. V. 2. M.: Izd-vo inostr. lit-ry, 1960. 897 p.
  12. Franz V.W. Zur Formulierung des Huygensschen Prinzips // Zeitschrift für Naturforschung. A. 1948. V. 3, N 8–11. P. 500–506.
  13. Zommerfel'd A. Optika / per. s nem. N.V. Rodnikovoj; pod red. M.A. El'jashevicha. M.: Izd-vo inostr. lit-ry, 1953. 486 p.
  14. Pattanayak D.N. Thesis. University of Rochester, 1973.
  15. Pattanayak D.N., Wolf E. General form and a new interpretation of the Ewald–Oseen extinction theorem // Opt. Commun. 1972. V. 6, N 3. P. 217–220.
  16. Jackson J.D. Classical electrodynamics. 3rd ed. N.Y.: John Wiley & Sons, 1998. 808 p.
  17. Orfanidis S.J. Electromagnetic waves and antennas. New Jersey: Rutgers University, 2014. 1188 p. URL: www.ece.rutgers.edu/~orfanidi/ewa
  18. Strjetton Dzh.A. Teorija jelektromagnetizma. M.; L.: Gostehteoretizdat, 1948. 539 p.
  19. Asvestas J.S. Diffraction by a black screen // J. Opt. Soc. Amer. 1975. V. 65, N 2. P. 155–158.
  20. Kottler F. Diffraction at a black screen. Part 1: Kirchhoff's theory // Prog. Opt. 1965. V. 4. P. 281–314.
  21. Kottler F. Diffraction at a black screen. Part II: Electromagnetic theory // Prog. Opt. 1967. V. 6. P. 331–377.
  22. Shhelkunov S.A., Friis H.T. Antenny: teorija i praktika. M.: Sov. radio, 1955. 604 p.
  23. Yang P., Liou K.N. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35, N 33. P. 6568–6584.
  24. Romashov D.N. Rassejanie sveta geksagonal'nymi ledjanymi kristallami // Optika atmosf. i okeana. 2001. V. 14, N 2. P. 116–124.
  25. Karczewski B., Wolf E. Comparison of three theories of electromagnetic diffraction at an aperture. Part II: The far field // J. Opt. Soc. Amer. 1966. V. 56, N 9. P. 1214–1219.
  26. Masuda K., Ishimoto H., Mano Y. Efficient method of computing a geometric optics integral for light scattering by nonspherical particles // Pap. Meteorol. Geophys. 2012. V. 63. P. 15–19.
  27. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Algoritm trassirovki puchkov dlja zadachi rassejanija sveta na atmosfernyh ledjanyh kristallah. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330.
  28. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Algoritm trassirovki puchkov dlja zadachi rassejanija sveta na atmosfernyh ledjanyh kristallah. Часть 2. Sravnenie s algoritmom trassirovki luchej // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 331–337.
  29. Algoritm trassirovki puchkov. URL: https://github.com/sasha-tvo/Beam-Splitting. Branch: physical-optics.
  30. Borovoi A., Konoshonkin A., Kustova N. Backscattering reciprocity for large particles // Opt. Lett. 2013. V. 38, N 15. P. 1485–1487.
  31. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 19. P. 2881–2884.
  32. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Granica primenimosti priblizhenija geometricheskoj optiki dlja reshenija zadachi obratnogo rassejanija sveta na kvazigorizontal'no orientirovannyh geksagonal'nyh ledjanyh plastinkah // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 705–712.