С помощью источника синхротронного излучения SOLEIL в диапазоне 30–200 см-1 были зарегистрированы спектры высокого разрешения, соответствующие чисто вращательной полосе и полосе ν2–ν2 двух наиболее распространенных изотопических форм озона с одним тяжелым атомом кислорода 18O. Кроме того, колебательно-вращательные полосы ν2 были зарегистрированы в диапазоне от 550 до 880 см-1 с использованием классического источника glowbar, что позволило расширить и уточнить информацию по сравнению с опубликованными данными для наблюдаемых переходов этих полос. Анализ зарегистрированных спектров позволил получить набор экспериментальных уровней энергии для основного (000) и первого изгибного (010) колебательных состояний, который значительно превышает литературные данные с точки зрения вращательных квантовых чисел. Для двух изотопических модификаций были проведены взвешенные подгонки всех экспериментальных положений линий, включая ранее опубликованные микроволновые данные. В результате были получены улучшенные значения вращательных параметров и параметров центробежного искажения для состояний (000) и (010), что позволило смоделировать положения экспериментальных линий со взвешенными стандартными отклонениями 1,284 (2235 переходов) и 0,908 (4597 переходов) для 16O16O18O и 1,168 (824 перехода) и 1,724 (2381 переход) для 16O18O16O соответственно.
озон, изотопические модификации, модель эффективного гамильтониана, вращательная полоса, полосы ν2–ν2 и ν2
1. Grebenshchikov S.Y., Qu Z.W., Zhu H., Schinke R. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands // Phys. Chem. Chem. Phys. 2007. V. 9. P. 2044–2064. DOI: 10.1039/B701020F.
2. Orphal J., Staehelin J., Tamminen J., Braathen G., De Backer M.R., Bais A., Balis D., Barbe A., Bhartia P.K., Birk M., Burkholder J.B., Chance K., von Clarmann T., Cox A., Degenstein D., Evans R., Flaud J.M., Flittner D., Godin-Beekmann S., Gorshelev V., Gratien A., Hare E., Janssen C., Kyrölä E., McElroy T., McPeters R., Pastel M., Petersen M., Petropavlovskikh I., Picquet-Varrault B., Pitts M., Labow G., Rotger-Languereau M., Leblanc T., Lerot C., Liu X., Moussay P., Redondas A., Van Roozendael M., Sander S.P., Schneider M., Serdyuchenko A., Veefkind P., Viallon J., Viatte C., Wagner G., Weber M., Wielgosz R.I., Zehner C. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015 // J. Mol. Spectrosc. 2016. V. 327. P. 105–121. DOI: 10.1016/J.JMS.2016.07.007.
3. Vasilchenko S., Mondelain D., Kassi S., Campargue A. Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 mm // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 278. P. 107678. DOI: 10.1016/j.jqsrt.2021.107678.
4. Barbe A., Mikhailenko S., Starikova E., Tyuterev V. High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function // Molecules. 2022. V. 27. P. 911. DOI: 10.3390/MOLECULES27030911.
5. Thiemens M.H., Heidenreich J.E. The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmo chemical implications // Science. 1983. V. 219. P. 1073–1075.
6. Mauersberger K., Krankowsky D., Janssen C., Schinke R. Assessment of the ozone isotope effect // Adv. Atom. Mol. Optic. Phys. 2005. V. 50. P. 1–54. DOI: 10.1016/S1049-250X(05)80006-0.
7. Gao Y.Q., Marcus R.A. Strange and unconventional isotope effects in ozone formation // Science. 2001. V. 293. P. 259–263.
8. Carlstad J.M., Boering K.A. Isotope effects and the atmosphere // Ann. Rev. Phys. Chem. 2023. V. 74. P. 439–465. DOI: 10.1146/annurev-physchem-061020-053429.
9. Mirahmadi M., Perez-Rios J., Egorov O., Tyuterev V., Kokoouline V. Ozone formation in ternary collisions: Theory and experiment reconciled // Phys. Rev. Lett. 2022. V. 128, N 10. P. 108501. DOI: 10.1103/PhysRevLett.128.108501.
10. Janssen C., Guenther J., Krankowsky D., Mauersberger K. Temperature dependence of ozone rate coefficients and isotope fractionation in 16O–18O oxygen mixtures // Chem. Phys. Lett. 2003. V. 367. P. 34–38.
11. Guillon G., Honvault P., Kochanov R., Tyuterev V. First-principles computed rate constant for the O + O2 isotopic exchange reaction now matches experiment // J. Phys. Chem. Lett. 2018. V. 9, N 8. P. 1931–1936. DOI: 10.1021/acs.jpclett.8b00661.
12. Yuen C.H., Lapierre D., Gatti F., Kokoouline V., Tyuterev V.G. The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O > 18O16O + 16O: The time-dependent picture // J. Phys. Chem. A. 2019. V. 123, N 36. P. 7733–7743. DOI: 10.1021/acs.jpca. 9b06139.
13. Babikov Y.L., Mikhailenko S.N., Barbe A., Tyuterev V.G. S&MPO – an information system for ozone spectroscopy on the WEB // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 145. P. 169–196. DOI: 10.1016/j.jqsrt.2014.04.024. Available online: http://smpo.univ-reims.fr; http://smpo.iao.ru.
14. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
15. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/j.jms.2021.111510.
16. Albert D., Antony B.K., Ba Y.A., Babikov Yu.L., Bollard Ph., Boudon V., Delahaye F., Del Zanna G., Dimitrijevic M.S., Drouin B.J., Dubernet M.-L., Duensing F., Emoto M., Endres C.P., Fazliev A.Z., Glorian J.-M., Gordon I.E., Gratier P., Hill C., Jevremovic D., Joblin C., Kwon D.-H., Kochanov R.V., Krishnakumar E., Leto G., Loboda P.A., Lukashevskaya A.A., Lyulin O.M., Marinkovic B.P., Markwick A., Marquart T., Mason N.J., Mendoza C., Millar T.J., Moreau N., Morozov S.V., Möller T., Müller H.S.P., Mulas G., Murakami I., Pakhomov Yu., Palmeri P., Penguen J., Perevalov V.I., Piskunov N., Postler J., Privezentsev A.I., Quinet P., Ralchenko Yu., Rhee Y.-J., Richard C., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schilke P., Schlemmer S., Smith K.W., Schmitt B., Skobelev I.Yu., Sreckovic V.A., Stempels E., Tashkun S.A., Tennyson J., Tyuterev V.G., Vastel Ch., Vujčiíc V., Wakelam V., Walton N.A., Zeippen C., Zwölf C.M. A decade with VAMDC: Results and ambitions // Atoms. 2020. V. 8. P. 76. DOI: 10.3390/atoms8040076.
17. Barbe A., Mikhailenko S., Starikova E., De Backer-Barilly M.-R., Tyuterev Vl.G., Mondelain D., Kassi S., Campargue A., Janssen C., Tashkun S., Kochanov R., Gamache R., Orphal J. Ozone spectroscopy in the electronic ground state: High resolution spectra analyses and update of line parameters since 2003 // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P 172–190.
18. Barbe A., Starikova E., De Backer M.-R., Tyuterev Vl.G. Analyses of infrared spectra of asymmetric ozone isopotologue 16O16O18O in the range 950–3850 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 231–247.
19. Starikova E., Barbe A., De Backer M.-R., Tyuterev V. Analysis of thirteen absorption bands of 16O18O18O ozone isotopomer in the 950–3500 cm-1 infrared spectral range // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 257. P. 107364.
20. Barbe A., Mikhailenko S., Starikova E., Tyuterev Vl. Infrared spectra of 16O3 in the 900–5600 cm-1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 276. P. 107936. DOI: 10.1016/j.jqsrt.2021.107936.
21. Старикова Е.Н., Barbe A. Экспериментальные центры двенадцати полос изотополога озона 16О16О18О в диапазоне 3400–5600 см-1. Сравнение с теоретическими расчетами на основе функции потенциальной энергии молекулы // Оптика атмосф. и океана. 2021. Т. 34, № 12. С. 927–933; Starikova E.N., Barbe A. Twelve experimental band centers of the 16O16O18O ozone isotopologue in the 3400–5600 cm-1 spectral range: Comparison with theoretical predictions from the potential energy surface // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 103–109. DOI: 10.1134/S1024856022020129.
22. Mondelain D., Campargue A., Kassi S., Barbe A., Starikova E., De Backer M.-R., Tyuterev Vl.G. The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm-1. Part 1: 16O16O18O // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 116. P. 49–66.
23. Vasilchenko S., Barbe A., Starikova E., Kassi S., Mondelain D., Campargue A., Tyuterev V. Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultra-sensitive experiments for probing potential energy function and vibrational dynamics // Phys. Rev. A. 2020. V. 102, N 5. P. 052804.
24. Васильченко С., Kassi S., Mondelain D., Campargue A. Лазерная спектроскопия высокого разрешения молекулы озона вблизи порога диссоциации // Оптика атмосф. и океана. 2021. Т. 34, № 5. С. 315–322; Vasilchenko S.S., Kassi S., Mondelain D., Campargue A. High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 373–380.
25. Depannemaecker J.C., Bellet J. Rotational spectra of 16O3 and the five 18O isotopic species // J. Mol. Spectrosc. 1977. V. 66. P. 106–120.
26. Chiu C., Cohen E.A. Rotational spectra of mono-18O-substituted ozones in the ν2 excited vibrational state // J. Mol. Spectrosc. 1985. V. 109. P. 239–245.
27. Flaud J.M., Camy-Peyret C., N’Gom A., Malathydevi V., Rinsland C.P., Smith M.A.H. The n2 bands of 16O16O18O and 16O18O16O // J. Mol Spectrosc 1989. V. 133. P. 217–223.
28. Roy P., Brubach J.B., Rouzières M., Pirali O., Manceron L., Kwabia Tchana F. AILES: La ligne IR et THz sur rayonnement Synchrotron SOLEIL // Rev. Electricité et Electronique 2008. V. 2. P. 23.
29. Brubach J.B., Manceron L., Rouzières M., Pirali O., Balcon D., Kwabia Tchana F., Boudon V., Tudorie M., Huet T., Cuisset A., Roy P. Performance of the AILES THz-IR beamline on Soleil for high resolution spectroscopy // AIP Conf. Proc. 2010. V. 1214. P. 81–84.
30. AILES: French national synchrotron facility. URL: https://www.synchrotron-soleil.fr/en/beamlines/ailes (last access: 20.09.2023).
31. Faye M., Bordessoule M., Kanouté B., Brubach J.-B., Roy P., Manceron L. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use // Rev. Sci. Inst. 2016. V. 87. P. 063119.
32. Manceron L., Barbe A., Tyuterev V., Grouiez B., Burgalat J., Rotger M., Roy P. Far infrared spectros copy of the ozone molecule and its isotopomers between 50 and 800 cm-1 // Abstracts of the 15th ASA Conference (united with 16th HITRAN Conference), 24–26 August 2022, Reims, France. P. 13.
33. Tyuterev V., Barbe A., Manceron L., Grouiez B., Tashkun S., Burgalat J., Rotger M. Ozone spectroscopy in the terahertz range from first high-resolution Synchrotron SOLEIL experiments combined with far-infrared measurements and ab initio intensity calculations // Spectroch. Acta A. 2023 (in press).
34. Plateaux J.-J., Régalia L., Boussin C., Barbe A. Multispectrum fitting technique for data recorded by Fourier transform spectrometer: Application to N2O and CH3D // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 507–520.
35. Chichery A. Analyse des spectres infrarouges haute résolution des formes isotopiques de l'ozone. Application aux études atmosphériques: PhD thesis, Université de Reims, 2000.
36. Tashkun S.A., Tyuterev Vl.G. GIP: A program for experimental data reduction in molecular spectroscopy // SPIE. Proc. Ser. 1994. V. 2205. P. 188–191. DOI: 10.1117/12.166203.
37. Tyuterev V., Tashkun S., Rey M., Nikitin A. High-order contact transformations of molecular Hamiltonians: General approach, fast computational algorithm and convergence of ro-vibrational polyad models // Mol. Phys. 2022. V. 120. P. e2096140. DOI: 10.1080/00268976.2022.2096140.
38. Flaud J.M., Bacis R. The ozone molecule: Infrared and microwave spectroscopy // Spectrochim. Acta. A. 1998. V. 54. P. 3–16. DOI: 10.1016/S1386-1425(97)00214-X.
39. Flaud J.M., Camy-Peyret C. Vibration-rotation intensities in H2O-type molecules application to the 2ν2, ν1, and ν3 bands of H216O // J. Mol. Spectrosc. 1975. V. 55. Р. 278–310. DOI: 10.1016/0022-2852(75)90270-2.
40. Sulakshina O.N., Borkov Yu., Tyuterev Vl.G., Barbe A. Third-order derivatives of the dipole moment function for ozone molecule // J. Chem. Phys. 2000. V. 113. P. 10572–10582.
41. Watson J.K.G. Determination of centrifugal distortion coefficients of asymmetric-top molecules // J. Chem. Phys. 1967. V. 46. P. 4189–4196.
42. Flaud J.-M., Camy-Peyret C., Rinsland C.P., Smith M.A.H., Malathy Devi V. Atlas of ozone spectral parameters from microwave to medium infrared. Boston: Academ. Press., 1990. 600 p.
43. Tyuterev V.G., Kochanov R.V., Tashkun S.A. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands // J. Chem. Phys. 2017. V. 146. P. 064304. DOI: 10.1063/1.4973977.