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Different methods for deriving expressions used for calculation of the 
characteristics of transmission, reflection, and absorption of radiation by cloud layers 
taking into account the illumination from below (from the underlying surface) are 
presented. 

 
In recent years many papers have been devoted to the 

investigation of the optical characteristics of cloud layers 
based on theoretical and experimental data. Their 
generalization and ample bibliography on this subject were 
given in Refs. (1–3). However, the problem of the 
investigation of the optical properties of clouds has not yet 
been completely solved, since new experimental data make 
it possible to reveal the new peculiarities of this complex 
phenomenon. As a part of the POLEX–76 and GAREX 
programs onboard the IL–18 and IL–14 aircraft laboratories 
the spectral fluxes of short–wave radiation were measured 
under and above the stratiform clouds located over the ice 
surface covered with snow. Observations of cloud layers 
illuminated not only from above but also from below raised 
some problems of their interpretation and analysis. This 
paper is devoted to consideration of these questions.  
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FIG. 1. Radiation fluxes in the atmosphere: incident on the 
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1
, reflected from the cloud F
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1
, transmitted through 

the cloud F
↓

2
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The spectral balances at the upper and lower heights  
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were used for subsequent determination of absolute (b
12

) 

and relative (β
12

) spectral influxes of the radiant energy in 

the cloud layers 
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The spectral albedo of the system A
1
 was considered as 

a characteristic of the reflectivity of clouds and the absolute 
b

12
 and relative β

12
 influxes as a characteristic of their 

spectral absorption. Sometimes the spectral transmission of 
the clouds was also calculated 
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The given quantities virtually describe the above–
indicated characteristics of the cloud layers if the cloud 
formations are not illuminated (or practically are not 
illuminated) from below. But, for example, the 
experimental data given in Ref. 4 were obtained over the 
surfaces with mean short–wave albedo of the order of 40% 
(May 29, 1976) and 60% (April 20, 1985). It evidently 
means that the clouds were illuminated from below. 

To take into account this illumination, we may use 
different approaches, however, we must finally obtain the 
same results. It seems to be interesting to consider the 
examples of different methods of solving the problem under 
consideration. 

When determining these parameters of the cloud 
layers, let us assume the existence of the reversibility 
properties of the above–indicated quantities, i.e., let us 
assume that the parameters above the cloud layer will be 
equal to the corresponding parameters below it. 

It will be really so in the case of absence of a sharp 
vertical inhomogeneity in the cloud layer (of a considerable 
thickening of the cloud layer from above or from below). It 
is evident that the resulting inhomogeneities will be 
smoothed in the process of development and transport of the 
cloud mass in the atmosphere, and the presence of sharp 
vertical inhomogeneities in stratus (it is the very case that 
we mean) is improbable. In addition, let us assume that the 
above–considered parameters of clouds are independent of 
the spatial distribution of the intensity of illuminating 
radiation flux due to relatively a large optical thickness of 
the cloud layers (τ . 1), i.e., their optical parameters from 
above and from below are equal in spite of the fact that the 
clouds are illuminated from above by directed solar 
radiation (at different angles with respect to the cloud 
surface) and from below by diffuse radiation reflected from 
the underlying surface. It will be true in the case of 
complete redistribution of radiation over the directions in  
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the process of radiative transfer in the cloud layer. This 
phenomenon is really observed in clouds with τ ≥ 10, as the 
estimates made by the Monte Carlo method show. 

 
1. THE METHOD OF A SUCCESSIVE SEPARATION 

AND SUBSEQUENT SUMMATION OF REFLECTED, 

TRANSMITTED, AND ABSORBED SHORT–WAVE 

RADIATION FLUXES 
 

Let us consider sequentially all the steps of the transfer 
of the radiation flux in the cloud layer by the method well 
known to specialists in analogy with the method which was 
used for the first time by Stokes in 1862 in calculating the 
transmission of the collection of milk glasses.5,6 

a) The incident radiation flux is divided into reflected, 
absorbed, and transmitted parts (there are no radiation 
sources in the earth's atmosphere in the short–wave range)  
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The following designations are introduced here: A is 
the albedo of the cloud layer (the effective coefficient of 
reflection of the radiation flux), T is the effective 
coefficient of transmission of the radiation flux through the 
clouds, and K is the effective coefficient of real absorption 
of the radiation flux by clouds. There is an evident relation 
between these quantities by virtue of the energy 
conservation law 
 

A + T + K ≡ 1 . (6) 
 

Taking Eq. (3) into account, we can write the evident 
relation for the coefficient K  
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b) The transmitted part of the incident flux 
(underlined in Eq. (5)) is divided into the absorbed and 
reflected from the surface  
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c) The part reflected from the surface (underlined in 
Eq. (8)) is divided into the transmitted, absorbed, and 
reflected from the clouds 
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and so on. As a result, we obtain the formulas for the flux 

reflected from the cloud layer (F
↑

1
) and for the fluxes 

absorbed by clouds (F
a
) and by the surface (F

as
):  
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It is evident that by virtue of the energy conservation law the 
identity  
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must be satisfied or, using Eqs. (10), (11) and (12), we 
obtain 
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This statement is easy proved using formula (5).  
Let us transform Eq. (11) using Eq. (12). Taking into 

account that F
as
 = (1 – A

2
)F

↓

2
 and comparing the right 

sides of this relation with Eq. (12) we obtain 
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Substituting Eq. (15) into Eq. (11), we find  
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and using Eq. (1) for the albedo A
2
, we obtain 

 

b
12

 = B
1
 – B

2
 = KF

↓

1
 + KF

↑

2
 = K(F

↓

1
 + F

↑

2
) . (17) 

 

Relation (17) is the same as Eq. (7), which has been already 
written. Subsequently we rewrite Eq. (15) taking into 
account Eq. (1), in the form 
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And, finally, multiplying by TA
2
 Eq. (15) and subtracting 

it from Eq. (10), we obtain F
↑

1
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↓

1
+ TA

2
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2
. Taking into 

account Eq. (1), we have 
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Thus, we derive Eq. (17) coinciding with Eq. (7) used for 
calculation of the coefficient K and two relations (18) and 
(19) for the coefficient A and T. 
 
2. THE EXACT CALCULATION OF THE RADIATIVE 

TRANSFER FOR A PLANE ATMOSPHERE MODEL 
 

Before writing the solution of the above–indicated 
system, let us show that it can be obtained on the basis of the 
rigourous theory. Practically the sought–after coefficients A 
and T coincide with the corresponding parameters in solving 
the radiative transfer equations for the plane atmospheric 
model with the "black bottom", i.e., in the absence of 
illumination from below (or the same, for A

2
 = 0). When 

A ≠ 0, we may write 
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It is well known7 that 
~
A and 

~
T are related with A and T by 

the formulas 
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In this case, using Eqs. (20) and (21) we obtain  
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Using the first equation of system (22) and taking into 
account definition (1) of the surface albedo A

2
, we write  
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Finally, substituting Eq. (23) into Eq. (22), we obtain  
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i.e., the equations completely coinciding with Eqs. (18) and 
(19).  

 
3. APPLICATION OF THE ENERGY CONSERVATION 

LAW 
 
Systems of equations (18) and (19) can be written 

without any calculations on the basis of the energy 
conservation law. Really, according to the definition of the 
coefficients A and T, taking into account the energy 
conservation law, we can write the relations 
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which agree with Eqs. (18) and (19). 
Thus, summarizing the above discussed three methods 

of the derivation of system (24), it should be noted that:  
a) the method of a successive separation and 

subsequent summation of the components of radiation fluxes 
makes it possible to illustrate the physical processes, which 
take place in the considered short–wave radiative transfer 
in the cloud layer as well as to formulate the assumptions 
about the properties of the layer, which must be introduced, 
but this method occurs to be very cumbersome; 

b) in Section 2 we used only the final results 
(Eq. (21)) of the exact calculation of the short–wave 
radiative transfer for the plane atmospheric model. To 
obtain them, we must make definite transformations. It 
should be noted that relations (21) were obtained in 
solving the problem, which does not completely coincide 
with the problem considered in this paper, so the 
applicability of them for solving the problem under 
consideration becomes evident due to the complete 
coincidence of final relations; 

c) relations (24) are written at once, without 
derivations, as a consequence of the energy conservation 
law. The specialists in radiative transfer theory often 
neglect a two–flux consideration, calling it "a two–flux 
approximation" and assuming it in all cases as the  

approximate method; it was convincingly shown above 
that it is a mistake.  

 
4. RELATIONS FOR THE COEFFICIENT A, T, AND K. 

 
Solving the above–written system for A and T, we 

obtain. 
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Let us note the other possible form of relations for A and T.  
Let us first consider the conservative radiative transfer 
(K ≡ 0). In this case T

0
 = 1 – A

0
 and from Eq. (24) we obtain 
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Here the subscript "0" refers to the case of the conservative 
radiative transfer. The difference between equations (27) 
gives the trivial identity for the case under consideration. 
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To find A
0
 we can use any equation, since they are 

identical (ΔF
↓
 ≡ ΔF

↑
 in the case of the conservative 

radiative transfer); however, in order to decrease the 
random of error in calculation of A

0
 (measurements of all 

four fluxes are assumed to be independent), it is better to 
find it after summation of the above–written relations 
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In general (K ≠ 0), substituting Eq. (6) into Eq. (20), 

after simple transformations we obtain  
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Subtracting these equations we obtain already known 
relation (7). Summing them (as it was made above), we find  
 

A = 
1
2 
ΔF

↓
 + ΔF

↑
 – K(F

↓

1
 – F

↑

2
)

F
↓

1
 – F

↑

2

 = A
0
 – 

K
2 . (30) 

 
Relation (30) can be easy understood from the physical 
point of view. 

For practical calculations of K, A, and T (without 
computer) it is more convenient to use the last formulas in 
the following order: a) we find K from Eq. (7), b) we find 
A from Eqs. (28) and (30), and c) we find T = 1 – K – A. 
Next paper of this journal describes the application of the 
obtained relations for the interpretation and analysis of the 
concrete experimental data. The author sincerely thanks 
Dr. A.K. Kolesov for the helpful discussions of this paper. 
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